HomeAbout JournalEditorial BoardSubscriptionsContacts UsSupport CHINESE
Home >> MagazineArticle
Researches Progress on Fabrication and Doping as W…
Author:LI Shipu LIAO Junjun LIN Shiwei CAO Yang LI Jianbao 
Keyword:titanium oxide  nanotube  fabrication  doping  
Year,volume(Issue):page number:2011,39(6):142-152

This paper summarizes researches progress on TiO2 nanotubes in recent years. The preparation methods of the TiO2 nanotubes and the underlying formation mechanisms are introduced, and key factors affecting the formation of anodic TiO2 nanotube arrays are discussed in detail. Different doping methods and their effects on the TiO2 nanotubes with various elements are summarized, and the N-doped TiO2 nanotubes are explained in depth. In addition to doping, another way to improve activity of the TiO2 nanotubes is the surface modification of the TiO2 nanotubes with quantum dots and organic dyes, which is also described in this paper. The future research and application prospects in this field are predicted.

how to cheat signs of a cheater wife cheat story
why women cheat on husbands link link
redirect how to cheat why women cheat on men they love
read wifes cheat reasons wives cheat on their husbands
why do wife cheat on husband why wifes cheat how to cheat wife
my wife cheated on me now what men and women husband cheat
abortion las vegas period after abortion abortion pictures
Foundation item:
About The Author:
open cheat women go
My wife cheated on me why wives cheat on husbands reasons married men cheat

[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semic onductor electrode [J]. Nature, 1972, 238: 37-38. [2] XU CHENGKUN, PAUL H SHIN, CAO Liangliang, et al. Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells [J]. Chem Mater, 2010, 22: 143-148. [3] WANG Jun, LIN Zhiqun. Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering [J]. Chem Mater, 2010, 22: 579-584. [4] ZHENG Qing, ZHOU Baoxue, BAI Jing, et al. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand [J]. Adv Mater, 2008, 20: 1044-1049. [5] ERDEM S, ZELIHA C, NECMETTIN K, et al. Synthesis of highly- ordered TiO2 nanotubes for a hydrogen sensor [J]. Int J Hydrogen Energy, 2010, 35: 4420-4427. [6] HU Zehuan, DU Ke, CAO Yang, et al. Fabrication and photocatalytic application of highly ordered TiO2 nanotube arrays [J]. J Mater Sci Eng, 2010, 4(8): 45-50. [7] BAI Jing, LI Jinhua, LIU Yanbiao, et al. A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays [J]. Appl Catal B, 2010, 95: 408-413. [8] NG Jiawei, ZHANG Xiwang, ZHANG Tong, et al. Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water [J]. J Chem Technol Biotechnol, 2010, 85: 1061-1066. [9] ZHANG Xiwang, DU Jianhong, LI Peifeng, et al. Grafted multifunctional titanium dioxide nanotube membrane:separation and photodegradation of aquatic pollutant [J]. Appl Catal B, 2008, 84: 262-267. [10] SONG Yanyan, FELIX S S, SEBASTIAN B, et al. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system [J]. J Am Chem Soc, 2009, 131: 4230-4232. [11] KALBACOVA M, MACAK J M, SCHMIDT S F, et al. TiO2 nanotubes: photocatalyst for cancer cell killing [J]. Phys Stat Sol (RRL), 2008, 2(4): 194-196. [12] GONG Dawei, GRIMES C A, VARGHESEET O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. J Mater Res, 2001, 16(12): 3331-3334. [13] KANG T S, SMITH A P, TAYLOR B E, et al. Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells [J]. Nano Lett, 2009, 9(2): 601-606. [14] PATRICK H. Formation of a titanium dioxide nanotube array [J]. Langmuir,1996, 12: 1411-1413. [15] MAIYALAGAN T, VISWANATHAN B. Fabrication and characterization of uniform TiO2 nanotube arrays by sol-gel template method [J]. Bull Mater Sci, 2006, 29(7): 705-708. [16] SHINSUKE Y, TSUYOSHI H. Fabrication of oxide nanohle arrays by a liquid phase deposition method [J]. J Alloys Compd, 2004, 373: 312-315. [17] ZHANG Jingdong, YANG Changzhu. Voltammetric behavior of TiO2 films on graphite electrodes prepared by liquid phase deposition [J]. Mater Chem Phys, 2004, 88: 398-403. [18] TOLEDO A J A, CORTES J M A, OROZCO C S L, et al. Assessing optimal photoactivity on titania nanotubes using different annealing temperatures [J]. Appl Catal B, 2011, 100: 47-54. [19] GENG Jiaqing, JIANG Zhongyi, WANG Yabo, et al. Carbon-modified TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method [J]. Scr Mater, 2008, 59: 352-355. [20] LI Zhenhua, LIU Zhongqing, YAN Qingzhi, et al. Preparation and performance of titanate nanotube by hydrothermal treatment [J]. Rare Metals, 2008, 27(2): 187-191. [21] WANG Daoai, ZHOU Feng, LIU Ying, et al. Synthesis and characterization of anatase TiO2 nanotubes with uniform diameter from titanium powder [J]. Mater Lett, 2008, 62: 1819-1822. [22] NIAN Junnan, TENG H. Hydrothermal synthesis of single crystalline anatase TiO2 nanorods with nanotubes as the precursor [J]. J Phys Chem B, 2006, 110: 4193-4198. [23] KIM G S, KIM Y S. Hydrothermal synthesis of titanate nanotubes followed by electrodeposition process [J]. Korean J Chem Eng, 2006, 23(6): 1037-1045. [24] TSAI C C, TENG H. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment [J]. Chem Mater, 2004, 16: 4352-4358. [25] OU H H, LO S L. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application [J]. Sep Purif Technol, 2007, 58: 179-191. [26] YANG Han, PAN Chunxu. Diameter-controlled growth of TiO2 nanotube arrays by anodization and its photoelectric property [J]. J Alloys Compd, 2010, 492: 33-35. [27] MOR G K, VARGHESE O K, PAULOSE M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications [J]. Sol Energ Mat Sol C, 2006, 90: 2011-2075. [28] CAI Qingyun, PAULOSE M, GRIMES C A, et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation [J]. J Mater Res, 2005, 20(1): 230-235. [29] LOCKMAN Z, SREEKANTAN S, ISMAILA S, et al. Influence of anodisation voltage on the dimension of titania nanotubes [J]. J Alloys Compnd, 2010, 503: 359-364. [30] VARGHESE O K, GONG Dawei, PAULOSE M, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays [J]. J Mater Res, 2003, 18(1): 156-165. [31] YUAN Xiaoliang, ZHENG Maojun, MA Li, et al. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization [J]. Nanotechnology, 2010, 21: 405302. [32] RUAN C, PAULOSE M, VARGHESE O K, et al. Enhanced photoelec- trochemical response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte [J]. Sol Energ Mat Sol C, 2006, 90: 1283-1295. [33] HOU Yang, LI Xinyong, ZOU Xuejun, et al. Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation [J]. Environ Sci Technol, 2009, 43: 858-863. [34] SUN Lan, LI Jing, LI Sifang, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity [J]. J Hazard Mater, 2009, 171: 1045-1050. [35] VEGA V, CERDEIRA M A, PRIDA V M, et al. Electrolyte influence on the anodic synthesis of TiO2 nanotube arrays [J]. J Non-Cryst Solids, 2008, 354: 5233-5235. [36] YANG Yang, WAND Xiaohui. Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization [J]. Mater Sci Eng B, 2008, 149: 58-62. [37] MACAK J M, SCHMUKI P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes [J]. Electrochim Acta, 2006, 52: 1258-1264. [38] RAJA K S, MISRA M, GANDHI T, et al. Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light [J]. J Power Sources, 2006, 161: 1450-1457. [39] KANG S H, KIM J Y, KIM H S. Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate [J]. J Ind Eng Chem, 2008, 14: 52-59. [40] YANG D J, KIM H G, CHO S J, et al. Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method [J]. Mater Lett, 2008, 62: 775-779. [41] ZHANG Fen, CHEN Shougang, YIN Yansheng, et al. Anodic formation of ordered and bamboo-type TiO2 anotubes arrays with different electrolytes [J]. J Alloys Compnd, 2010, 490: 247-252. [42] CHEN Yanyan, ZHANG Shoumin, YU Ying, et al. Synthesis, charac- terization and photocatalytic activity of N-doped TiO2 nanotubes [J]. J Dispersion Sci Technol, 2008, 29: 245-249. [43] JIANG Zheng, YANG Fan, LUO Nianjun, et al. Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysisw [J]. Chem Commun, 2008, 11(4): 6372-6374. [44] FENG Caixia, WANG Yan, IN Zhensheng, et al. Photoactive centers responsible for visible-light photoactivity of N-dopedTiO2 [J]. New J Chem, 2008, 32: 1038-1047. [45] KIM D, FUJIMOTO S, SCHMUKI P, et al. Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys [J]. Electrochem Commun, 2008, 10: 910-913. [46] LAI Yuekun, HUANG Jianying, ZHANG Huifang, et al. Nitrogen- doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources [J]. J Hazard Mater, 2010, 184(1-3): 855- 863. [47] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocata- lysis in nitrogen-doped titaniym oxides [J]. Science, 2001, 293: 269- 271. [48] IRIE H, WATANABE Y, HASHIMOTO K. Nitrogen dependence on photocata-lytic activity of TiO2-xNx powders [J]. J Phys Chem B, 2003, 107(23): 5483-5486. [49] IHARA T, MIYOSHI M, TRIYAMA Y, et al. Visible-light-active titaniym oxide photocatalyst realized by an oxygen-deficient struture and by nitrogen doping [J]. Appl Calal B, 2003, 108: 617-620. [50] SHANKAR K, PAULOSE M, MOR G K, et al. A study on the spectral photo-response and photoelectrochemical properties of flame-annealed titania nanotube-arrays [J]. J Phys D: Appl Phys, 2005, 38: 3543-3549. [51] TERUHISA O, MIYAKO A, TSUTIMU U, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Appl Catal A, 2004, 265: 115-121. [52] SU Yaling, HAN Song, ZHANG Xingwang, et al. Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes [J]. Mater Chem Phys, 2008, 110: 239-246. [53] LI D, HANEDA H, HISHITA S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde [J]. J Fluorine Chem, 2005, 126: 69-77. [54] ZHANG Yanyan, FU Wuyou, YANG Haibin, et al. Synthesis and characterization of P-doped TiO2 nanotubes [J]. Thin Solid Films, 2009, 518: 99-103. [55] SU Yaling, XIAO Yutang, FU Xiang, et al. Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes [J]. Mater Res Bull, 2009, 44: 2169-2173. [56] SU Yan, CHEN Shuo, QUAN Xie, et al. A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity [J]. Appl Surf Sci, 2008, 255: 2167-2172. [57] GHICOV A, SCHMIDT B, KUNZE J, et al. Photoresponse in the visible range from Cr doped TiO2 nanotubes [J]. Chem Phys Lett, 2007, 433: 323-326. [58] LIU Haijin, LIU Guoguang, ZHOU Qingxiang. Preparation and cha- racterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity [J]. J Solid State Chem, 2009, 182: 3238-3242. [59] HAN Xiao, ZHU Yihua, YANG Xiaoling, et al. Electrocatalytic activity of Pt doped TiO2 nanotubes catalysts for glucose determination [J]. J Alloys Compd, 2010, 500: 247-251. [60] MOR G K, PRAKASAM H E, VARGHESE O K, et al. Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis [J]. Nano Lett, 2007, 7(8): 2356-2364. [61] LEI Lecheng, SU Yaling, ZHOU Minghua, et al. Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte [J]. Mater Res Bull, 2007, 42: 2230-2236. [62] SU Yaling, ZHANG Xingwang, ZHOU Minghua, et al. Preparation of high efficient photoelectrode of N-F-codoped TiO2 nanotubes [J]. J Photochem Photobiol A: Chem, 2008, 194: 152-160. [63] CHEN Xiuqin, ZHANG Xingwang, SU Yaling, et al. Preparation of visible-light responsive P-F-codoped TiO2 nanotubes [J]. Appl Surf Sci, 2008, 254: 6693-6696. [64] SU Yaling-Su, ZHANG Xingwang, HAN Song, et al. F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition [J]. Electrochem Commun, 2007, 9: 2291-2298. [65] LIU Shaohuan, YANG Lixia, XU Shihai, et al. Photocatalytic activities of C-N-doped TiO2 nanotube array/carbon nanorod composite [J]. Electrochem Commun, 2009, 11: 1748-1751. [66] HUANG L H, SUN C, LIU Y L. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light [J]. Appl Surf Sci, 2007, 253: 7029-7035. [67] LIU Haijin, LIU Guoguang, SHI Xiangyang. N/Zr-codoped TiO2 nanotube arrays: fabrication, characterization, and enhanced photocatalytic activity [J]. Colloids Surf A:Physicochem Eng Aspects, 2010, 363: 35-40. [68] SHRESTHA N K, YANG Min, NAH Y C, et al. Self-organized TiO2 nanotubes: visible light activation by Ni oxide nanoparticle decoration [J]. Electrochem Commun, 2010, 12: 254-257. [69] SUN Wentao, YU Yuan, PAN Huayong, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. J Amer Chem Soc, 2008, 130: 1124-1125. [70] RATANATNWANATE C, XIONG Chunrong, BALKUS K J, et al. Fabrication of PbS quanum dot doped TiO2 nanotubes [J]. Nano Lett, 2008, 2(8): 682-1688. [71] GAO Xianfeng, LI Hongbo, SUN Wentao, et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes [J]. J Phys Chem C, 2009, 113: 7531-7535. [72] LEE W, KANG S H, HASHIMOTO M, et al. Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum [J]. Electrochem Commun, 2008, 10: 1579-1582. [73] ZHANG Yunhuai, YANG Yannan, XIAO Peng, et al. Preparation of Ni nanoparticle TiO2 nanotube composite by pulse electrodeposition [J]. Mater Lett, 2009, 63: 2429-2431. [74] WANG Ning, LI Xinyong, WANG Yuxin, et al. Synthesis of ZnO/TiO2 nanotube composite film by a two-step route [J]. Mater Lett, 2008, 62: 3691-3693. [75] ROY P, ALBU S P, SCHMUKI P, et al. TiO2 nanotubes in dye-sen- sitized solar cells:higher efficiencies by well-defined tube tops [J]. Electrochem Commun, 2010, 12: 949-951. [76] LU Na, CHEN Shuo, QUAN Xie, et al. Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity [J]. J Solid State Chem, 2008, 181: 2852-2858. [77] LIANG Haichao, LI Xiangzhong. Visible-induced photocatalytic reactivity of polymersensitized titania nanotube films [J]. Appl Catal B, 2009, 86: 8-17.

why women cheat on husbands online link
online reason why husband cheat married woman looking to cheat
how to catch a cheater link go
why married men cheat on their wives women cheat on men
bystolic copay card click bystolic coupon voucher
Service and feedback:
Article download】【Add to Wishlist
Editorial Department of Journal of the Chinese Ceramic Society
Address: No.11 Sanlihe Road, Beijing, China    P.C.:100831