HomeAbout JournalEditorial BoardSubscriptionsContacts UsSupport CHINESE
Home >> MagazineArticle
Recent Development on Basic Research and Industria…
Author:SUN Huicheng LUO Yanhong LI Dongmei MENG Qingbo 
Unit: 
Keyword:dye-sensitized solar cell  photoanode  dye  electrolyte 
Classification:TM914.4;O646
Year,volume(Issue):page number:2011,39(7):7-14
Summary:

On the basis of the introduction of the structure and working principle of dye-sensitized solar cells (DSCs), this paper presents the recent developments on the fundamental material and device studies of DSCs (e.g. photoanode, sensitizer, electrolyte and counter electrode) from the angles of cell efficiency improvement and cost reduction. Progresses of the device integration and industrialization of the DSCs are also reviewed as well as the existing challengers and future prospects.

married cheaters cheat on my wife click
online read here open
read why people cheat in relationships signs of infidelity
why do wife cheat on husband why wifes cheat how to cheat wife
Foundation item:
国家杰出青年基金(20725311)中国科学院创新项目资助。
About The Author:
博士研究生
married cheaters why some women cheat click
read read here link
cialis coupon cialis coupon cialis coupon
cialis discount coupons cialis 2015 coupon
References:

[1] OREGAN B, GRATZEL M A. Low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737-740. [2] NAZEERUDDIN M K, de ANGELIS F, FANTACCI S, et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers [J]. J Am Chem Soc, 2005, 127(48): 16835-16847. [3] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 36)[J]. Prog Photovoltaics, 2010, 18 (5): 346-352. [4] WEERASINGHE H C, SIRIMANNE P M, FRANKS G V, et al. Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells [J]. J Photoch Photobio A, 2010, 213(1): 30-36. [5] ZHU K, NEALE, N R, MIEDANER, A, et al. Enhanced charge- collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J]. Nano Lett, 2007, 7(1): 69-74. [6] MOR G K, VARGHESE O K, PAULOSE M, et al. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films [J]. Adv Funct Mater, 2005, 15(8): 1291-1296. [7] ZHU K, VINZANT T B, NEALE N R, et al. Removing structural disorder from oriented TiO2 nanotube arrays: Reducing the dimensio- nality of transport and recombination in dye-sensitized solar cells [J]. Nano Lett, 2007, 7(12): 3739-3746. [8] SHANKAR K, MOR G K, PRAKASAM H E, et al. Highly-ordered TiO2 nanotube arrays up to 220 mu m in length: use in water photoe- lectrolysis and dye-sensitized solar cells [J]. Nanotechnology, 2007, 18(6): 065707. [9] CHEN Q W, XU D S. Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells [J]. J Phys Chem C, 2009, 113(15): 6310-6314. [10] WANG J, LIN Z Q. Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering [J]. Chem Mater, 2010, 22(2): 579-584. [11] LEI B X, LIAO J Y, ZHANG R, et al. Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells [J]. J Phys Chem C, 2010, 114(35): 15228-15233. [12] CHEN D H, HUANG F Z, CHENG Y B, et al. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells [J]. Adv Mater 2009, 21(21): 2206-2210. [13] CHEN D H, CAO L, HUANG F Z, et al. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm)[J]. J Am Chem Soc, 2010, 132(12): 4438-4444. [14] SAUVAGE F, CHEN D H, COMTE P, et al. Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10% [J]. Acs Nano, 2010, 4(8): 4420- 4425. [15] LINDSTROM H, HOLMBERG A, MAGNUSSON E, et al. A new method to make dye-sensitized nanocrystalline solar cells at room temperature [J]. J Photoch Photobio A, 2001, 145 (1/2): 107-112. [16] LINDSTROM H, HOLMBERG A, MAGNUSSON E, et al. A new method for manufacturing nanostructured electrodes on plastic substrates [J]. Nano Lett, 2001, 1(2): 97-100. [17] YAMAGUCHI T, TOBE N, MATSUMOTO D, et al. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes [J]. Chem Commun, 2007 (45): 4767-4769. [18] PARK N G, KIM K M, KANG M G, et al. Chemical sintering of nanoparticles: A methodology for low-temperature fabrication of dye-sensitized TiO2 films [J]. Adv Mater, 2005, 17(19): 2349-2353. [19] 王岳, 吴季怀, 范乐庆, 等. 柔性染料敏化太阳能电池研究进展[J]. 材料导报, 2010, 24: 131. WANG Yue, WU Jihuai, FAN Leqing, et al. Mater Rev (in Chinese), 2010, 24, 131 [20] YANG L, WU L Q, WU M X, et al. High-efficiency flexible dye- sensitized solar cells fabricated by a novel friction-transfer technique [J]. Electrochem Commun, 2010, 12(7): 1000-1003. [21] HUANG X M, HUANG S Q,ZHANG Q X, et al. A flexible photoe- lectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs)[J]. Chem Commun, 2011, 47(9), 2664-2666. [22] POTOCNIK J, Renewable energy sources and the realities of setting an energy agenda [J]. Science, 2007, 315(5813): 810-811. [23] NAZEERUDDIN M K, PECHY P, GRATZEL M, Efficient panchro- matic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex [J]. Chem Commun, 1997, (18): 1705-1706. [24] NAZEERUDDIN M K, PECHY P, RENOUARD T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J Am Chem Soc, 2001, 123(8): 1613-1624. [25] WANG P, ZAKEERUDDIN S M, MOSER J E, et al. Stable new sensitizer with improved light harvesting for nanocrystalline dye- sensitized solar cells [J]. Adv Mater, 2004, 16(20): 1806-1811. [26] KAY A, GRATZEL M. Artificial Photosynthesis .1. Photosensitization of TiO2 solar-cells with chlorophyll derivatives and related natural porphyrins [J]. J Phys Chem-Us, 1993, 97(23): 6272-6277. [27] BESSHO T, ZAKEERUDDIN S M, YEH C Y, et al. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor- Substituted Porphyrins [J]. Angew Chem Int Edit, 2010, 49(37): 6646-6649. [28] ZHANG G L, BALA H, CHENG Y M, et al. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary pi-conjugated spacer [J]. Chem Commun, 2009 (16): 2198- 2200. [29] HARA K, SATO T, KATOH R, et al. Molecular design of coumarin dyes for efficient dye-sensitized solar cells [J]. J Phys Chem B, 2003, 107(2): 597-606. [30] HARA K, WANG Z S, SATO T, et al. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells [J]. J Phys Chem B, 2005, 109(32): 15476-15482. [31] ITO S, MIURA H, UCHIDA S, et al. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye [J]. Chem Commun, 2008, (41): 5194-5196. [32] NOZIK A J. Quantum dot solar cells [J]. Physica E, 2002, 14(1-2): 115-120. [33] LEE Y L, LO Y S. Highly Efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe [J]. Adv Funct Mater, 2009, 19(4): 604-609. [34] ZHANG Q X, GUO X Z, HUANG X M, et al. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes [J]. Phys Chem Chem Phys, 2011, 13(10), 4659-4667 [35] YU Z X, ZHANG Q X, QIN D, et al. Highly efficient quasi-solid-state quantum-dot-sensitized solar cell based on hydrogel electrolytes [J]. Electrochem Commun, 2010, 12: 1776-1779 [36] DENG M H, HUANG S Q, ZHANG Q X, et al. Screen-printed Cu2S-based Counter Electrode for Quantum-dot-sensitized Solar Cell [J]. Chem Lett, 2010, 39(11): 1168-1170. [37] OGURA R Y, NAKANE S, MOROOKA M, et al. High-performance dye-sensitized solar cell with a multiple dye system [J]. Appl Phys Lett, 2009, 94(7): 073308. [38] 秦达, 郭晓枝, 孙惠成, 等. 染料敏化太阳能电池固态电解质的研究进展[J]. 化学进展, 2011, 23: 557-568. QIN Da, GUO Xiaozhi, SUN Huicheng, et al. Progress in Chemistry (in Chinese), 2011, 23: 557-568 [39] NUSBAUMER H, MOSER J E, ZAKEERUDDIN S M, et al. Co-II(dbbiP)(2)(2+) complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells [J]. J Phys Chem B, 2001, 105(43): 10461-10464. [40] SAPP S A, ELLIOTT C M, CONTADO C, et al. Substituted polypy- ridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells [J]. J Am Chem Soc, 2002, 124(37): 11215-11222. [41] FELDT S M, GIBSON E A, GABRIELSSON E, et al. Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High- Efficiency Dye-Sensitized Solar Cells [J]. J Am Chem Soc, 2010, 132(46): 16714-16724. [42] WANG M K, CHAMBERLAND N, BREAU L, et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells [J]. Nature Chem, 2010, 2(5): 385-389. [43] LI D M, LI H, LUO Y H, et al. Non-Corrosive, Non-Absorbing Organic Redox Couple for Dye-Sensitized Solar Cells [J]. Adv Funct Mater, 2010, 20(19): 3358-3365. [44] PAPAGEORGIOU N, MAIER W F, GRATZEL M. An iodine/triiodide reduction electrocatalyst for aqueous and organic media [J]. J Electrochem Soc, 1997, 144(3): 876-884. [45] WEI T C, WAN C C, WANG Y Y. Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells [J]. Appl Phys Lett, 2006, 88(10): 103122. [46] MURAKAMI T N, ITO S, WANG Q, et al. Highly efficient dye- sensitized solar cells based on carbon black counter electrodes [J]. J Electrochem Soc, 2006, 153(12): A2255-A2261. [47] HUANG Z, LIU X H, LI K X, et al. Application of carbon materials as counter electrodes of dye-sensitized solar cells [J]. Electrochem Commun, 2007, 9(4): 596-598. [48] LI K X, LUO Y H, YU Z X, et al. Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells [J]. Electrochem Commun, 2009, 11(7): 1346-1349. [49] CHA S I, KOO B K, SEO S H, et al. Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls [J]. J Mater Chem, 2010, 20(4): 659-662. [50] RAMASAMY E, LEE W J, LEE D Y, et al. Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I-3(-)) reduction in dye-sensitized solar cells [J]. Electrochem Commun, 2008, 10(7): 1087-1089. [51] CHEN J K, LI K X, LUO Y H, et al. A flexible carbon counter electrode for dye-sensitized solar cells [J]. Carbon, 2009, 47(11): 2704-2708. [52] SAITO Y, KUBO W, KITAMURA T, et al. I-/I3- redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells [J]. J Photoch Photobio A, 2004, 164(1-3): 153-157. [53] SUN H C, LUO Y H, ZHANG Y D, et al. In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells [J]. J Phys Chem C, 2010, 114(26): 11673-11679. [54] WANG M K, ANGHEL A M, MARSAN B, et al. CoS supersedes pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells [J]. J Am Chem Soc, 2009, 131(44): 15976-15977. [55] SUN H C, QIN D, HUANG S Q, et al. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique [J]. Energy & Environ Sciences, 2011, DOI: 10.1039/ c0ee00791a [56] FUKUI A, FUKE N, KOMIYA R, et al. Dye-Sensitized Photovoltaic Module with Conversion Efficiency of 8.4% [J]. Appl Phys Express, 2009, 2(8): 082202. [57] 于哲勋, 李冬梅, 秦达, 等. 染料敏化太阳能电池的研究与发展现状[J]. 中国材料进展, 2009 (7/8): 8-15. YU Zhexun, LI Dongmei, QIN Da, et al. Mater China (in Chinese), 2009 (7/8): 8-15.

redirect why do women cheat on their husbands unfaithful husband
sumatriptan side effects sumatriptan side effects sumatriptan side effects
Service and feedback:
Article download】【Add to Wishlist
Editorial Department of Journal of the Chinese Ceramic Society
Address: No.11 Sanlihe Road, Beijing, China    P.C.:100831
http://www.jccsoc.com
E-mail:jccsoc@vip.163.com