HomeAbout JournalEditorial BoardSubscriptionsContacts UsSupport CHINESE
Home >> MagazineArticle
Ceramic Materials for Solid Oxide Fuel Cell
Author:HAN Minfang  ZHANG Yongliang 
Unit:1. State Key Laboratory of Power Systems  Department of Thermal Engineering  Tsinghua University  Beijing 100084  China  2. Tsinghua Innovation Center in Dongguan  Dongguan 523808  Guangdong  China 
Keyword:solid oxide fuel cell  oxide-ion conductor  mixed 
Classification:O614
Year,volume(Issue):page number:2017,45(11):0-0
Summary:
Solid oxide fuel cell (SOFC) is known as a ceramic fuel cell. The key components including electrolyte, cathode and anode
are ceramic materials. The dense electrolyte film requires a pure oxygen ion conductivity. In general, the oxygen ion conductivity is
mainly derived from the oxygen vacancy in oxide materials by doping lower valence metallic ions. Fluorite structured Y2O3 stabilized
ZrO2 (YSZ) and Sc2O3 stabilized ZrO2 (ScSZ) are the main electrolyte materials for industrial application. The doped CeO2, δ-Bi2O3
and doped LaGaO3 perovskite, with a higher oxygen ion conductivity, have a potential application for SOFC at a lower temperature.
The electrodes are porous ceramic materials with oxygen ion and electron conductivity. Ni-YSZ cermet has been used in industries
due to its high electrochemical performance. The perovskite materials with a mixed ionic and electronic conductivity (MIEC) have
attracted considerable attention because of their potential applications in SOFC under hydrocarbon fuels. Doped LaMnO3-YSZ
composite ceramic is a widely used cathode material for high-temperature SOFC, having a high electrochemical performance and a
good stability in long-term operation. While the doped LaFeO3, especially La0.6Sr0.4Co0.2Fe0.8O3, is used in intermediate-temperature
SOFC, also showing good electrochemical activity and stability. Moreover, optimizing the composition and structure of cathode
material remains a research focus for the development of SOFC.
Foundation item:
国家重大研发计划(2017YFB0601903);北京市百名领军人才 项目(Z151100000315031);山西省科技厅项目(MD2014-08); 东莞市引进创新科研团队(201460720100025);清华大学自 主科研计划(2015THZ0)。
About The Author:
韩敏芳(1967—),女,博士,教授。
References:
[1] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001(414): 345–352.
[2] BRETT D J, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chem Soc Rev, 2008(37): 1568–1578.
[3] ORMEROD R M. Solid oxide fuel cells[J]. Chem Soc Rev, 2003(32): 17–28.
[4] 韩敏芳, 彭苏萍. 固体氧化物燃料电池材料及制备[M]. 北京: 科学出版社, 2004: 9–11.
[5] 曹加锋, 朱志文, 刘卫. 钙钛矿结构质子导体基固体氧化物燃料电池电解质研究进展[J]. 硅酸盐学报, 2015, 43(6): 734–740.
CAO Jiafeng, ZHU Zhiwen, LIU Wei. J Chin Ceram, 2015, 43(6): 734–740.
[6] MALAVASI L, FISHER C A, ISLAM M S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features[J]. Chem Soc Rev, 2010, 39(11): 4370–4387.
[7] SUNARSO J, HASHIM S S, ZHU N, et al. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review[J]. Prog Energ Combust, 2017, 61: 57–77.
[8] ATKINSON A, BARNETT S, GORTE R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nat Mater, 2004(3): 17–27.
[9] COWIN P I, PETIT C T, LAN R, et al. Recent progress in the development of anode materials for solid oxide fuel cells[J]. Adv Energy Mater, 2011(1): 314–332.
[10] KILNER J A, BURRIEL M. Materials for intermediate-temperature solid-oxide fuel cells[J]. Ann Rev Mater Res, 2014(44): 365–393.
[11] MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: A review[J]. Prog Mater Sci, 2015(72): 141–337.
[12] ORERA A, SLATER P. New chemical systems for solid oxide fuel cells[J]. Chem Mater, 2009(22): 675–690.
[13] FERGUS J W. Electrolytes for solid oxide fuel cells[J]. J Power Sources, 2006(162): 30–40.
[14] BADWAL S. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity[J]. Solid State Ionics, 1992(52): 23–32.
[15] ETSELL T, FLENGAS S N. Electrical properties of solid oxide electrolytes[J]. Chem Rev, 1970(70): 339–376.
[16] 胡敏, 张震宇, 陈涵, 等. 固体氧化物燃料电池用电解质YSZ表面介观结构的修饰[J]. 硅酸盐学报, 2016, 44(4): 498–502.
HU Min, ZHANG Zhenyu, CHEN Han, et al. J Chin Ceram Soc, 2016, 44(4): 489–502.
[17] 韩敏芳, 杨志宾, 刘泽, 等. 亚微米晶粒氧化钇稳定氧化锆电解质的稳定性[J]. 硅酸盐学报, 2010, 38(1): 1–6.
HAN Minfang, YANG Zhibin, LIU Ze, et al. J Chin Ceram Soc, 2010, 38(1): 1–6.
[18] GOODENOUGH J B. Oxide-ion electrolytes[J]. Ann Rev Mater Res, 2003, 33: 91–128.
[19] STEELE B C H. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 ℃[J]. Solid State Ionics, 2000, 129: 95–110.
[20] MOGENSEN M, SAMMES N M, TOMPSETT G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129: 63–94.
[21] KHARTON V V, FIGUEIREDO F M, NAVARRO L, et al. Ceria-based materials for solid oxide fuel cells[J]. J Mater Sci, 2001, 36: 1105–1117.
[22] WANG S, INABA H, TAGAWA H, et al. Nonstoichiometry of Ce0.9Gd0.1O1.95−x[J]. Solid State Ionics, 1998, 107: 73–79.
[23] IWAHARA H, ESAKA T, SATO T, et al. Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln= La,Yb)[J]. J Solid State Chem, 1981, 39: 173–180.
[24] FENG M, GOODENOUGH J. A superior oxide-ion electrolyte[J]. Eur J Solid State Inorg Chem, 1994, 31: 663–672. 
[25] ISHIHARA T, MATSUDA H, TAKITA Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor[J]. J Am Chem Soc, 1994, 116: 3801–3803.
[26] HUANG K, FENG M, GOODENOUGH J B, et al. Electrode performance test on single ceramic fuel cells using as electrolyte Sr-and Mg-doped laGaO3[J]. J Electrochem Soc, 1997, 144: 3620–3624.
[27] HUANG K, TICHY R S, GOODENOUGH J B. Superior perovskite oxide-ion conductor; strontium-and magnesium-doped LaGaO3: I, phase relationships and electrical properties[J]. J Am Ceram Soc, 1998, 81: 2565–2575.
[28] 史可顺. 中温固体氧化物燃料电池电解质材料及其制备工艺的研究发展趋势[J]. 硅酸盐学报, 2008, 36(11): 1676–1688.
SHI Keshun. J Chin Ceram Soc, 2008, 36(11): 1676–1688.
[29] 黄贤良, 赵海雷, 吴卫江, 等. 固体氧化物燃料电池阳极材料的研究进展[J]. 硅酸盐学报, 2005, 33(11): 109–115.
HUANG Xianliang, ZHAO Hailei, WU Weijiang, et al. J Chin Ceram Soc, 2005, 33(11): 109–115.
[30] 汪峰, 缪馥星, 官万兵. 不同还原条件下制备的固体氧化物燃料电池支撑阳极Ni-YSZ的性能[J]. 硅酸盐学报, 2015, 43(5): 650–656.
WANG Feng, MIAO Fuxing, GUAN Wanbing. J Chin Ceram Soc, 2015, 43(5): 650–656.
[31] WANG W, SU C, WU Y, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chem Rev, 2013, 113(10): 8104–8151.
[32] G R T M. Comprehensive review of methane conversion in solid oxide fuel cells: prospects for efficient electricity generation from natural gas[J]. Prog Energ Combust, 2016, 54: 1–64.
[33] BOLDRIN P, RUIZ-TREJO E, MERMELSTEIN J, et al. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis[J]. Chem Rev, 2016, 116(22): 13633–13684.
[34] SASAKI K, TERAOKA Y. Equilibria in fuel cell gases II. The CHO ternary diagrams[J]. J Electrochem Soc, 2003, 150(7): A885–A888.
[35] HANNA J, LEE W Y, SHI Y, et al. Fundamentals of electro-and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels[J]. Prog Energ Combust, 2014, 40: 74–111.
[36] YANG L, CHOI Y, QIN W, et al. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nat Commun, 2011(2): 357.
[37] 刘珊, 王建新, 何长荣, 等. 电解质支撑电池的NiO-Ce0.9Gd 0.1O1.95阳极的制备及性能[J]. 硅酸盐学报, 2013, 41(8): 1057–1062.
LIU Shan, WANG Jianxin,HE Changrong, et al. J Chin Ceram Soc, 2013, 41(8): 1057–1062.
[38] MCINTOSH S, GORTE R J. Direct Hydrocarbon Solid Oxide Fuel Cells[J]. Chem Rev, 2004, 104(10): 4845–4866.
[39] PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(6775): 265–267.
[40] JUNG S, LU C, HE H, et al. Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes[J]. J Power Sources, 2006, 154(1): 42–50.
[41] SIN A, KOPNIN E, DUBITSKY Y, et al. Performance and life-time behaviour of NiCu–CGO anodes for the direct electro-oxidation of methane in IT-SOFCs[J]. J Power sources, 2007, 164(1): 300–305.
[42] MARINA O A, CANFIELD N L, STEVENSON J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate[J]. Solid State Ionics, 2002, 149(1): 21–28.
[43] NEAGU D, IRVINE J T. Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells[J]. Chem Mater, 2010, 22(17): 5042–5053.
[44] AGUILAR L, ZHA S, CHENG Z, et al. A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels[J]. J Power Sources, 2004, 135(1): 17–24.
[45] CHENG Z, ZHA S, AGUILAR L, et al. Chemical, electrical, and thermal properties of strontium doped lanthanum vanadate[J]. Solid State Ionics, 2005, 176(23): 1921–1928.
[46] TAO S, IRVINE J T. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nat Mater, 2003, 2(5): 320–323.
[47] TAO S, IRVINE J T, KILNER J A. An Efficient Solid Oxide Fuel Cell Based upon Single‐Phase Perovskites[J]. Adv Mater, 2005, 17(14): 1734–1737.
[48] HUANG Y H, DASS R I, XING Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006(312): 254–257.
[49] HUANG Y H, DASS R I, DENYSZYN J C, et al. Synthesis and characterization of Sr2MgMoO6−δ an anode material for the solid oxide fuel cell[J]. J Electrochem Soc, 2006, 153(7): A1266–A1272.
[50] LIU Q, DONG X, XIAO G, et al. A novel electrode material for symmetrical SOFCs[J]. Adv Mater, 2010(22): 5478–5482.
[51] SU C, WANG W, LIU M, et al. Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes[J]. Adv Energy Mater, 2015, 5(14): 1500188.
[52] BASTIDAS D M, TAO S, IRVINE J T. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes[J]. J Mater Chem, 2006, 16(17): 1603–1605.
[53] SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nat Mater, 2015, 14(2): 205–209.
[54] YANG C, YANG Z, JIN C, et al. Sulfur-Tolerant Redox-Reversible Anode Material for Direct Hydrocarbon Solid Oxide Fuel Cells[J]. Adv Mater, 2012, 24(11): 1439–1443.
[55] YANG Z, XU N, HAN M, et al. Performance evaluation of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ as both anode and cathode material in solid oxide fuel cells[J]. Int J Hydrogen Energ, 2014, 39(14): 7402–7406.
[56] NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nat Chem, 2013, 5(11): 916–923.
[57] NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nat Commun, 2015(6): 8120.
[58] DU Z, ZHAO H, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6−δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660–8669.
[59] MADSEN B, KOBSIRIPHAT W, WANG Y, et al. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes[J]. J Power Sources, 2007, 166(7): 64–67.
[60] KOBSIRIPHAT W, MADSEN B, WANG Y, et al. La0.8Sr0.2Cr1−x RuxO3−δ–Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance[J]. Solid State Ionics, 2009, 180(2): 257–264.
[61] KOBSIRIPHAT W, MADSEN B, WANG Y, et al. Nickel-and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance[J]. J Electrochem Soc, 2010, 157(2): B279–B284.
[62] BIERSCHENK D M, POTTER-NELSON E, HOEL C, et al. Pd-substituted (La, Sr)CrO3−δ–Ce0.9Gd0.1O2−δ solid oxide fuel cell anodes exhibiting regenerative behavior[J]. J Power Sources, 2011, 196(6): 3089–3094.
[63] YANG C, LI J, LIN Y, et al. In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells[J]. Nano Energy, 2015, 11: 704–710.
[64] ARRIV C, DELAHAYE T, JOUBERT O, et al. Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential 
hydrogen electrode material for solid oxide electrochemical cells[J]. J Power Sources, 2013, 223: 341–348.
[65] ADLER S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes[J]. Chem Rev, 2004, 104(10): 4791–4844.
[66] LARRAMENDI I R D, ORTIZ-VITORIANO N, BAUTISTA I B D, et al. Designing Perovskite Oxides for Solid Oxide Fuel Cells, in: L PAN, G ZHU (Eds.) Perovskite Materials-Synthesis, Characterisation, Properties, and Applications[M]. Place InTech, Published, 2016: 20.
[67] JACOBSON A J. Materials for solid oxide fuel cells[J]. Chem Mater, 2009, 22(3): 660–674.
[68] PETROV A, KONONCHUK O, ANDREEV A, et al. Crystal structure, electrical and magnetic properties of La1−xSrxCoO3−y[J]. Solid State Ionics, 1995, 80(3/4): 189–199.
[69] CHEN D, CHEN C, BAIYEE Z M, et al. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chem Rev, 2015, 115(18): 9869–9921.
[70] SHAO Z, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005): 170–173.
[71] ZHOU W, RAN R, SHAO Z. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review[J]. J Power Sources, 2009, 192(2): 231–246.
[72] HIBINO T, HASHIMOTO A, INOUE T, et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures[J]. Science, 2000, 288(5473): 2031–2033.
[73] TARANC N A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2010, 20(19): 3799–3813.
[74] TASKIN A, LAVROV A, ANDO Y. Achieving fast oxygen diffusion in perovskites by cation ordering[J]. Appl Phys Lett, 2005, 86(9): 091910.
[75] ZHANG K, GE L, RAN R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs[J]. Acta Mater, 2008, 56(17): 4876–4889.
[76] KIM G, WANG S, JACOBSON A, et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations[J]. J Mater Chem, 2007, 17(24): 2500–2505.
[77] XIAO G, LIU Q, WANG S, et al. Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells[J]. J Power Sources, 2012, 202: 63–69.
[78] 谢志翔, 赵海雷, 周雄, 等. 固体氧化物燃料电池双钙钛矿型电极材料的研究进展[J]. 硅酸盐学报, 2010, 38(6): 1140–1144.
XIE Zhixiang, ZHAO Hailei, ZHOU Xiong, et al. J Chin Ceram Soc, 2010, 38(6): 1140–1144.
[79] HERN NDEZ A M, MOGNI L, CANEIRO A. La2NiO4+δ as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes[J]. Int J Hydrogen Energ, 2010, 35(11): 6031–6036.
Service and feedback:
Article download】【Add to Wishlist
Editorial Department of Journal of the Chinese Ceramic Society
Address: No.11 Sanlihe Road, Beijing, China    P.C.:100831
http://www.jccsoc.com
E-mail:jccsoc@vip.163.com