HomeAbout JournalEditorial BoardSubscriptionsContacts UsSupport CHINESE
Home >> MagazineArticle
Keyword:topological constraint theory  glass  calculation method 
Year,volume(Issue):page number:2018,46(1):1-10

he thermal, mechanical and rheological properties of glasses are determined by the bound state of topological structures in three dimensions. The topological constraint theory is based on the glass short-range topology, which can establish the relationship between the microstructure and the properties of glass. This theory, which has been used to investigate the properties of oxide glasses, chalcogenide glasses and nitrogen oxides glasses, is simple and effective for establishing the structure-properties relationships of new glass system and the composition design of high-performance glasses. In this review, the fundamentals, development and application of this theory were described. In addition, the topological bound theory and the future development were also given.

Foundation item:
About The Author:

[1] MAURO J C, TANDIA A, VARGHEESE K D, et al. Accelerating the Design of Functional Glasses through Modeling[J]. Chem Mater, 2016, 28(12): 4267–4277.

[2] PEDONE A. Properties Calculations of Silica-Based Glasses by Atomistic Simulations Techniques A Review[J]. J Phys Chem C, 2009, 113(48): 20773–20784.
[3] M.F.THORPE. Continuous deformations in random networks[J]. J Non-Cryst Solids, 1983, 57(3): 355–370.
[4] PHILLIPS J C. Topology of covalent non-crystalline solids I Short-rangeorder in chalcogenide alloys[J]. J Non-Cryst Solids, 1979, 34(1): 153–181.
[5] PHILLIPS J C, THORPE M F. Constraint theory vector percolation and glass formation[J]. Solid State Commun, 1985, 53(8): 699–702.
[6] JIANG Q, ZENG H D, LIU Z, et al. Glass transition temperature and topological constraints of sodium borophosphate glass-forming liquids[J]. J Chem Phys, 2013, 139(12): 124502.
[7] JIANG Q, ZENG H D, LI X, et al. Tailoring sodium silicophosphate glasses containing SiO(6)-octahedra through structural rules and topological principles[J]. J Chem Phys, 2014, 141(12): 124506.
[8] ZENG H D, JIANG Q, LIU Z, et al. Unique sodium phosphosilicate glasses designed through extended topological constraint theory[J]. J Phys Chem B, 2014, 118(19): 5177–5183.
[9] ZENG H D, JIANG Q, LI X, et al. Anneal-induced enhancement of refractive index and hardness of silicophosphate glasses containing six-fold coordinated silicon[J]. Appl Phys Lett, 2015, 106(2): 021903.
[10] SMEDSKJAER M M, MAURO J C, SEN S, et al. Quantitative Design of Glassy Materials Using Temperature-Dependent Constraint Theory[J]. Chem Mater, 2010, 22(18): 5358–5365.
[11] SMEDSKJAER M M, MAURO J C, YUE Y. Prediction of glass hardness using temperature-dependent constraint theory[J]. Phys Rev Lett, 2010, 105(11): 115503(1-12).
[12] SMEDSKJAER M M, MAURO J C, YOUNGMAN R E, et al. Topological principles of borosilicate glass chemistry [J]. J Phys Chem B, 2011, 115(44): 12930–12946.
[13] FU A I, MAURO J C. Topology of alkali phosphate glass networks[J]. J Non-Cryst Solids, 2013, 361: 57–62.
[14] GUPTA P K, MAURO J C. Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints[J]. J Chem Phys, 2009, 130(9): 094503.
[15] HERMANSEN C, RODRIGUES B P, WONDRACZEK L, et al. An extended topological model for binary phosphate glasses[J]. J Chem Phys, 2014, 141(24): 244502. 
[16] MAURO J C, GUPTA P K, LOUCKS R J. Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids[J]. J Chem Phys, 2009, 130(23): 234503.
[17] JI X M, ZENG H D, Li X, et al. High Glass Transition Temperature Barium Silicophosphate Glasses Designed with Topological Constraint Theory[J]. J Am Ceram Soci, 2016, 99(4): 1255–1258.
[18] ZENG H D, YE F, LI X, et al. Elucidating the role of AlO6-octahedra in aluminum silicophosphate glasses through topological constraint theory[J]. J Am Ceram Soc, 2017, 100: 1395–1401.
[19] SMEDSKJAER M M, POTUZAK M. Viscosity and fragility of alkaline-earth sodium boroaluminosilicate liquids[J]. J Am Ceram Soc, 2013, 96(9): 2831–2838.
[20] WONDRACZEK L, MAURO J C, ECKERT J, et al. Towards ultrastrong glasses[J]. Adv Mater, 2011, 23(39): 4578–4586.
[21] SMEDSKJAER M M, MAURO J C, SEN S, et al. Impact of network topology on cationic diffusion and hardness of borate glass surfaces[J]. J Chem Phys, 2010, 133(15): 154509.
[22] ZACHARIASEN W H. The Atomic Arrangement In Glass[J]. J Am Ceram Soc, 1932, 44(10): 3841–3851.
[23] COOPER A R. Zachariasen's rules, Modelung constant and network topology[J]. Phys Chem Glasses. 1978, 19: 60–68.
[24] COOPER A R. W.H. Zachariasen-the melody lingers on[J]. J Non-Cryst Solids, 1982, 49(1): 1–17.
[25] GUPTA P K, COOPER A R. Topologically disordered networks of rigid polytopes[J]. J Non-Cryst Solids, 1990, 123(1/3): 14–21. 
[26] KAUZMANN W. The nature of the glassy state and the behavior of liquids at low temperatures[J]. Chem Rev, 1948, 43(2): 219–256.
[27] SWILER D R, VARSHNEYA A K, CALLAHAN R M. Microhardness, surface toughness and average coordination number in chalcogenide glasses[J]. J Non-Cryst Solids, 1990, 125(3): 250–257.
[28] SREERAM A N, SWILER D R, VARSHNEYA A K. Gibbs-DiMarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses[J]. J Non-Cryst Solids, 1991, 127(3): 287–297.
[29] SENAPATI U, VARSHNEYA A K. Configurational arrangements in chalcogenide glasses: A new perspective on Phillips' constraint theory[J]. J Non-Cryst Solids, 1995, 185(3): 289–296. 
[30] SENAPATI U, FIRSTENBERG K, VARSHNEYA A K. Structure-property inter-relations in chalcogenide glasses and their practical implications[J]. J Non-Cryst Solids, 1997, 222(12): 153–159.
[31] BOOLCHAND P, ENZWEILER R N, CAPPELLETTI R L, et al. Vibrational thresholds in covalent networks[J]. Solid State Ionics, 1990, 39(1/2): 81–89.
[32] GUPTA P K. Rigidity, Connectivity, and Glass-Forming Ability[J]. J Am Ceram Soc, 2010, 76(5): 1088–1095.
[33] KERNER R, PHILLIPS J C. Quantitative principles of silicate glass chemistry[J]. Solid State Commun, 2000, 117(1): 47–51.
[34] PHILLIPS J C, KERNER R. Structure and function of window glass and Pyrex[J]. J Chem Phys, 2008, 128(17): 174506.
[35] GUPTA P K, MIRACLE D B. A topological basis for bulk glass formation[J]. Acta Mater, 2007, 55(13): 4507–4515. 
[36] PHILLIPS J C. Constraint theory and hierarchical protein dynamics[J]. J Phys: Condens Matter, 2004, 16(16): S5065.
[37] PHILLIPS J C. Scaling and Self-Organized Criticality in Proteins: Lysozyme c[J]. Phys Rev E, 2009, 80: 051916.
[38] NAUMIS G G. Energy landscape and rigidity[J]. Phys Rev E, 2005, 71(2): 026114.
[39] MAURO J C, ELLISON A J, ALLAN D C, et al. Topological model for the viscosity of multicomponent glass-Forming liquids[J]. Int J Appl Glass Sci, 2013, 4(4): 408–413.
[40] RODRIGUES B P, MAURO J C, Yue Y, et al. Modifier constraints in alkali ultraphosphate glasses[J]. J Non-Cryst Solids, 2014, 405: 12-15.
[41] HERMANSEN C, GUO X, YOUNGMAN R E, et al. Structure-topology-property correlations of sodium phosphosilicate glasses[J]. J Chem Phys, 2015, 143(6): 064510.
[42] RODRIGUES B P, WONDRACZEK L. Floppy mode degeneracy and decoupling of constraint predictions in supercooled borate and silicate liquids[J]. Front Mater, 2015, 1: 32.
[43] RODRIGUES B P, WONDRACZEK L. Medium-range topological constraints in binary phosphate glasses[J]. J Chem Phys, 2013, 138(24): 4578.
[44] MAURO J C. Topological constraint theory of glass[J]. Am Ceram Soc Bull, 2011, 90(4): 31–37.
[45] HERMANSEN C, YOUNGMAN R E, WANG J, et al. Structural and topological aspects of borophosphate glasses and their relation to physical properties[J]. J Chem Phys, 2015, 142(18): 184503. 
[46] NAUMIS G G. Variation of the glass transition temperature with rigidity and chemical composition[J]. Phys Rev B, 2006, 73(17): 172202.
[47] BAUCHY M, MICOULAUT M. Atomic scale foundation of temperature-dependent bonding constraints in network glasses and liquids[J]. J Non-Cryst Solids, 2011, 357(14): 2530-2537.
[48] ANGELL C A. Spectroscopy simulation and scattering, and the medium range order problem in glass[J]. J Non-Cryst Solids, 1985, 73(1/3): 1–17.
[49] ANGELL C A. Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit[J]. J Non-Cryst Solids, 1988, 102(1/3): 205–221.
[50] ANGELL C A. Relaxation in liquids, polymers and plastic crystals-strong/fragile patterns and problems[J]. J Non-Cryst Solids, 1991, S 131-133(6): 13–31.
[51] TOPLIS M J. Adam-Gibbs theory and the prediction of glass transition temperatures: the join Na2Si2O5-NaAlSi2O6[J]. Mineral Mag, 1998.
[52] ADAM G, GIBBS J H. On the Temperature dependence of cooperative relaxation properties in glass-forming liquids[J]. J Chem Phys, 1965, 43(1): 139–146.
[53] SCHERER G W. Use of the Adam-Gibbs Equation in the Analysis of Structural Relaxation[J]. J Am Ceram Soc, 2006, 67(7): 504–511.
[54] BOTTINGA Y, RICHET P. Silicate melt structural relaxation: rheology, kinetics, and Adam-Gibbs theory[J]. Chem Geol, 1996, 128(1/4): 129–141.
[55] EDIGER M D, ANGELL C A, NAGEL S R. Supercooled Liquids and Glasses[J]. J Phys Chem, 1996, 100(31): 13200–13212.
[56] BOUCHAUD J P, BIROLI G.. On the Adam Gibbs-Kirkpatrick- Thirumalai-Wolynes scenario for the viscosity increase in glasses[J]. J Chem Phys, 2004, 121(15): 7347–7354.
[57] GUPTA P K, MIRACLE D B. A topological basis for bulk glass formation[J]. Acta Mater, 2007, 55(13): 4507–4515.
[58] ZENG H D, YE F, LI X, et al. Calculation of thermal expansion coefficient of glasses based on topological constraint theory[J]. Chem Phys Lett, 2016, 662: 268–272.
[59] HERMANSEN C, MAURO J C, YUE YUANZHENG. A model for phosphate glass topology considering the modifying ion sub-network[J].  J Chem Phys, 2014, 140(15): 154501.
[60] MICOULAUT M. Rigidity transitions and constraint counting in amorphous networks: Beyond the mean-field approach[J]. Europhys Lett, 2002, 58(6): 830–836.
[61] MICOULAUT M, PHILLIPS J C. Rings and rigidity transitions in network glasses[J]. Phys Rev B, 2003, 67(10): 104204(1–9).
[62] RODRIGUES B P, WONDRACZEK L. Cationic constraint effects in metaphosphate glasses[J]. J Chem Phys, 2014, 140(21): 214501.
Service and feedback:
Article download】【Add to Wishlist
Editorial Department of Journal of the Chinese Ceramic Society
Address: No.11 Sanlihe Road, Beijing, China    P.C.:100831