HomeAbout JournalEditorial BoardSubscriptionsContacts UsCHINESE
Home >> MagazineArticle
Year,volume(Issue):page number:2019,47(9):0-0
Foundation item:
About The Author:

 [1] COLOMBO P. Conventional and novel processing methods for cellular ceramics[J]. Philos T R Soc A, 2006, 364(1838): 109–124.

[2] COLOMBO P, DEGISCHER H P. Highly porous metals and ceramics[J]. Mater Sci Tech-Lond. 2010, 26(10): 1145–1158.
[3] HAMMEL E, IGHODARO O–R, OKOLI O. Processing and properties of advanced porous ceramics: An application based review[J]. Ceram Int, 2014, 40(10): 15351–15370.
[4] SCHAEDLER T A, CARTER W B. Architected cellular materials[J]. Annu Rev Mater Res, 2016, 46(1): 187–210.
[5] WU H B, HUANG Z R, WANG G, et al. Alumina heat insulator through composite poring mechanisms[J]. Int J Appl Ceram Tec, 2014, 11(6): 1061–1067.
[6] 柴宇新. 蛋白发泡工艺制备泡沫陶瓷及其性能研究[D]. 深圳: 哈尔滨工业大学, 2013.
CHAI Yuxin. Ceramic foam prepared by protein foaming method and its preformance (in Chinese, dissertation). Shenzhen: Harbin Institute of Technology, 2013.
[7] CARTY W M, LEDNOR P W. Monolithic ceramics and heterogeneous catalysts: Honeycombs and foams[J]. Curr Opin Solid St M, 1996, 1(1): 88–95.
[8] CARVALHO A, RAUPP–PEREIRA F, NETO J R, et al. A new source for production of ceramic filters[J]. Mater Lett, 2015, 145: 250–252.
[9] GATICA J M, VIDAL H. Non-cordierite clay-based structured materials for environmental applications[J]. J Hazard Mater, 2010, 181(1–3): 9–18.
[10] RUL S, LAURENT C, PEIGNEY A, et al. Carbon nanotubes prepared in situ in a cellular ceramic by the gelcasting-foam method[J]. J Eur Ceram Soc, 2003, 23(8): 1233–1241.
[11] PEDERSEN–MJAANES H, CHAN L, MASTORAKOS E. Hydrogen production from rich combustion in porous media[J]. Int J Hydrogen Energ, 2005, 30(6): 579–592.
[12] Fend T, Hoffschmidt B, Pitz–Paal R, et al. Porous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties[J]. Energy. 2004, 29(5–6): 823–833.
[13] 邬浩, 雷景轩, 赵中坚, 等. 多孔陶瓷材料在天线罩上的应用进展[J]. 陶瓷学报. 2008, 29(4): 384–389.
WU Hao, LEI Jingxuan, ZHAO Zhongjian, et al. J Ceram (in Chinese), 2008, 29(4): 384–389.
[14] SEPULVEDA P, ORTEGA F, INNOCENTINI M D, et al. Properties of highly porous hydroxyapatite obtained by the gelcasting of foams[J]. J Am Ceram Soc, 2000, 83(12): 3021–3024.
[15] SEPULVEDA P, BINNER J G P, ROGERO S O, et al. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation[J]. J Biomed Mater Res, 2000, 50(1): 27–34.
[16] BEST S M, PORTER A E, THIAN E S, et al. Bioceramics: Past, present and for the future[J]. J Eur Ceram Soc, 2008, 28(7): 1319–1327.
[17] KARL S, SOMERS A V, Method of making porous ceramic articles. U.S. Patent No. 3,090,094. 21 May 1963.
[18] STUDART A R, GONZENBACH U T, TERVOORT E, et al. Processing routes to macroporous ceramics: a review[J]. J Am Ceram Soc, 2006, 89(6): 1771–1789.
[19] 戴培赟, 王泌宝, 李晓丽. 多孔陶瓷制备技术研究进展[J]. 陶瓷学报. 2013, 34(1): 95–101.
DAI Peiyun, WANG Mibao, LI Xiaoli. J Ceram(in Chinese), 2013, 34(1): 95–101.
[20] KIM Y W, JIN Y J, CHUN Y S, et al. A simple pressing route to closed-cell microcellular ceramics[J]. Scripta Mater, 2005, 53(8): 921–925.
[21] EOM J H, KIM Y W, SONG I H, et al. Processing and properties of polysiloxane-derived porous silicon carbide ceramics using hollow microspheres as templates[J]. J Eur Ceram Soc, 2008, 28(5): 1029–1035.
[22] KIM Y W, KIM S H, KIM H D, et al. Processing of closed-cell silicon oxycarbide foams from a preceramic polymer[J]. J Mater Sci, 2004, 39(18): 5647–5652.
[23] KIM S H, KIM Y W, PARK C B. Effect of inert filler addition on pore size and porosity of closed-cell silicon oxycarbide foams[J]. J Mater Sci, 2004, 39(10): 3513–3515.
[24] JANG D H, KIM Y W, SONG I H, et al. Processing of highly porous, open-cell, microcellular silicon carbide ceramics by expansion method using expandable microspheres[J]. J Ceram Soc Jpn, 2006, 114(1330): 549–553.
[25] SONG I H, KIM M J, KIM H D, et al. Processing of microcellular cordierite ceramics from a preceramic polymer[J]. Scripta Mater, 2006, 54(8): 1521–1525.
[26] ANDERSSON L, BERGSTRÖM L. Gas-filled microspheres as an expandable sacrificial template for direct casting of complex-shaped macroporous ceramics[J]. J Eur Ceram Soc, 2008, 28(15): 2815–2821.
[27] 吴海波, 袁波, 韩建燊, 等. 多孔陶瓷材料的制备研究进展[J]. 耐火材料. 2012, 46(3): 230–235.
WU Haibo, YUAN Bo, HAN Jianshen, et al. Refractories (in Chinese), 2012, 46(3): 230–235.
[28] YUAN B, WU H B, SUN X F, et al. Fabrication of porous alumina green bodies from suspension emulsions by gelcasting[J]. Mater Lett, 2012, 81: 151–154.
[29] VITORINO N, ABRANTES J C C, FRADE J R. Cellular ceramics processed by paraffin emulsified suspensions with collagen consolidation[J]. Mater Lett, 2013, 98: 120–123.
[30] SANCHES M F, VITORINO N, ABRANTES J C C, et al. Effects of processing parameters on cellular ceramics obtained by paraffin emulsified suspensions[J]. Ceram Int, 2014, 40(7): 9045–9053.
[31] SANCHES M F, VITORINO N, FREITAS C, et al. Cellular ceramics by gelatin gelcasting of emulsified suspensions with sunflower oil[J]. J Eur Ceram Soc, 2015, 35(9): 2577–2585.
[32] VITORINO N, FREITAS C, KOVALEVSKY A V, et al. Cellular MgAl2O4 spinels prepared by reactive sintering of emulsified suspensions[J]. Mater Lett, 2016, 164: 190–193.
[33] GARCIA–TUNON E, BARG S, BELL R, et al. Designing smart particles for the assembly of complex macroscopic structures[J]. Angew Chem Int Edit, 2013, 52(30): 7805–7808.
[34] GARCIA–TUNON E, MACHADO G C, SCHNEIDER M, et al. Complex ceramic architectures by directed assembly of 'responsive' particles[J]. J Eur Ceram Soc, 2017, 37(1): 199–211.
[35] BINKS B P. Particles as surfactants-similarities and differences[J]. Curr Opin Colloid In, 2002, 7(1): 21–41.
[36] MAO X J, SHIMAI S Z, DONG M J, et al. Gelcasting of alumina using epoxy resin as a gelling agent[J]. J Am Ceram Soc, 2007, 90(3): 986–988.
[37] MAO X J, SHIMAI S Z, DONG M J, et al. Gelcasting and pressureless sintering of translucent alumina ceramics[J]. J Am Ceram Soc, 2008, 91(5): 1700–1702.
[38] MAO X J, SHIMAI S Z, WANG S W. Gelcasting of alumina foams consolidated by epoxy resin[J]. J Am Ceram Soc, 2008, 28(1): 217–222.
[39] 毛小建. 新型凝胶注成型及其在氧化物陶瓷中的应用[D]. 上海: 中国科学院上海硅酸盐研究所, 2008.
MAO Xiaojian. Novel gelcasting method and its application for oxide ceramics (in Chinese, dissertation). Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2008.
[40] YANG Y, SHIMAI S, WANG S. Room-temperature gelcasting of alumina with a water–soluble copolymer[J]. J Mater Res, 2013, 28(11): 1512–1516.
[41] SHIMAI S, YANG Y, WANG S, et al. Spontaneous gelcasting of translucent alumina ceramics[J]. Opt Mater Express, 2013, 3(8): 1000–1006.
[42] QIN X P, ZHOU G H, YANG Y, et al. Gelcasting of transparent YAG ceramics by a new gelling system[J]. Ceram Int, 2014, 40(8): 12745–12750.
[43] ZHANG P, LIU P, SUN Y, et al. Aqueous gelcasting of the transparent MgAl2O4 spinel ceramics[J]. J Alloy Compd, 2015, 646: 833–836.
[44] YANG Y, SHIMAI S, SUN Y, et al. Fabrication of porous Al2O3 ceramics by rapid gelation and mechanical foaming[J]. J Mater Res, 2013, 28(15): 2012–2016.
[45] WAN T, YAO D X, HU H L, et al. Fabrication of porous Si3N4 ceramics through a novel gelcasting method[J]. Mater Lett, 2014, 133: 190–192.
[46] DENG X, WANG J, LIU J, et al. Preparation and characterization of porous mullite ceramics via foam-gelcasting[J]. Ceram Int, 2015, 41(7): 9009–9017.
[47] 张小强, 孙怡, 岛井骏藏, 等. 水溶性环氧树脂对注凝成型Al2O3泡沫陶瓷结构和性能的影响[J]. 无机材料学报. 2015, 30(10): 4.
ZHANG Xiaoqiang, SUN Yi, SHIMAI Shunzo, et al. J Inorg Mater (in Chinese), 2015, 30(10): 4.
[48] 张小强. 高气孔率泡沫陶瓷的注凝成型[D]. 上海: 中国科学院上海硅酸盐研究所, 2015.
ZHANG Xiaoqiang. Gelcasting of porous ceramics with high porosity (in Chinese, dissertation). Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2015. 
[49] PICKERING S U. Cxcvi.—emulsions[J]. J Chem Soc Trans, 1907, 91: 2001–2021.
[50] RAMSDEN W. Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).-preliminary account[J]. Proc R Soc London, 1903, 72(477–486): 156–164.
[51] 吴飞. 固体粒子的稳泡机理[J]. 探矿工程(岩土钻掘工程). 1997(1): 50–52.
WU Fei. Explor Eng (in Chinese), 1997(1): 50–52.
[52] 吴玮, 陈洪龄. 颗粒稳定乳液和泡沫体系的原理和应用(Ⅲ)-气/水界面的Pickering现象[J]. 日用化学工业. 2013, 43(3): 173–178+196.
WU Wei, CHEN Hongli. China Surfactant Deterg Cosmet (in Chinese), 2013, 43(3): 173–178+196.
[53] DICKINSON E. Food emulsions and foams: Stabilization by particles[J]. Curr Opin Colloid In, 2010, 15(1–2): 40–49.
[54] GONZENBACH U T, STUDART A R, TERVOORT E, et al. Ultrastable particle-stabilized foams[J]. Angew Chem Int Edit, 2006, 45(21): 3526–3530.
[55] GONZENBACH U T, STUDART A R, TERVOORT E, et al. Macroporous ceramics from particle-stabilized wet foams[J]. J Am Ceram Soc, 2007, 90(1): 16–22.
[56] JUILLERAT F K, GONZENBACH U T, STUDART A R, et al. Self-setting particle–stabilized foams with hierarchical pore structures[J]. Mater Lett. 2010, 64(13): 1468–1470.
[57] KRAUSS JUILLERAT F, GONZENBACH U T, ELSER P, et al. Microstructural control of self-setting particle-stabilized ceramic foams[J]. J Am Ceram Soc, 2011, 94(1): 77–83.
[58] 杨金龙, 林煌, 席小庆, 等. 粒子稳定型泡沫浆料及多孔氧化铝陶瓷的制备[J]. 硅酸盐学报. 2008, 36(2): 220–223.
YANG Jinlong, LIN Huang, XI Xiaoqing, et al. J Chin Ceram Soc, 2008, 36(2): 220–223.
[59] 余娟丽, 杨金龙, 李和欣, 等. 短链两亲分子活性剂制备氮化硅泡沫陶瓷[J]. 硅酸盐学报. 2012, 40(3): 329–334.
YU Juanli, YANG Jinlong, LI Hexin, et al. J Chin Ceram Soc, 2012, 40(3): 329–334.
[60] YU J, YANG J, LI S, et al. Preparation of Si3N4 foam ceramics with nest-like cell structure by particle-stabilized foams[J]. J Am Ceram Soc, 2012, 95(4): 1229–1233.
[61] CHUANUWATANAKUL C, TALLON C, DUNSTAN D E, et al. Controlling the microstructure of ceramic particle stabilized foams: influence of contact angle and particle aggregation[J]. Soft Matter, 2011, 7(24): 11464–11474.
[62] CHUANUWATANAKUL C, TALLON C, DUNSTAN D E, et al. Producing large complex-shaped ceramic particle stabilized foams[J]. J Am Ceram Soc, 2013, 96(5): 1407–1413.
[63] FRANKS G V, CHUANUWATANAKUL C, TALLON C. Particle-stabilized foams for advanced ceramic component production[J]. Chem Lett, 2012, 41(10): 1360–1362.
[64] TALLON C, CHUANUWATANAKUL C, DUNSTAN D E, et al. Mechanical strength and damage tolerance of highly porous alumina ceramics produced from sintered particle stabilized foams[J]. Ceram Int, 2016, 42(7): 8478–8487.
[65] ZABIEGAJ D, SANTINI E, GUZMAN E, et Al. Nanoparticle laden interfacial layers and application to foams and solid foams[J]. Colloid Surface A, 2013, 438: 132–140.
[66] 赵瑾. 表面活性剂疏水修饰陶瓷颗粒制备泡沫陶瓷[D]. 上海: 中国科学院大学上海硅酸盐研究所, 2018.
ZHAO Jin. Ceramic foams fabricated from particle-stabilized foams with surfactant as hydrophobic modifier (in Chinese, dissertation). Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018. 
[67] FUKS D, SHTER G E, MANN–LAHAV M, et al. Crack-free drying of ceramic foams by the use of viscous cosolvents[J]. J Am Ceram Soc, 2010, 93(11): 3632–3636.
[68] ZHAO J, SHIMAI S Z, ZHOU G H, et al. Ceramic foams shaped by oppositely charged dispersant and surfactant[J]. Colloid Surface A, 2018, 537: 210–216.
MAO X, SHIMAI S, WANG S. Gelcasting of alumina foams consolidated by epoxy resin[J]. J Eur Ceram Soc, 2008, 28(1): 217–222.
Service and feedback:
Article download】【Add to Wishlist
Editorial Department of Journal of the Chinese Ceramic Society
Address: No.11 Sanlihe Road, Beijing, China    P.C.:100831