采用固相反应法分别制备了V2O5,Co2O3和ZnO氧化物掺杂的0.95MgTiO3-0.05CaTiO3(95MCT)介质陶瓷。研究了V2O5,Co2O3和ZnO氧化物掺杂对95MCT陶瓷烧结特性和介电性能的影响。结果表明:V2O5,Co2O3和ZnO氧化物掺杂的95MCT陶瓷的主晶相为MgTiO3和CaTiO3两相结构,无中间相MgTi2O5出现。V2O5,Co2O3和ZnO氧化物掺杂可以有效地降低95MCT陶瓷的烧结温度,提高致密化程度,降低介电损耗,调节温度系数。ZnO掺杂的95MCT陶瓷性能最好:烧结温度降低至1 250℃,介电常数为21.7,烧结密度可达3.8 g/cm3(理论密度的98.4%),介电损耗降低至10-5,温度系数为0.12×10-5/℃。
|
0.95 MgTiO3–0.05CaTiO3(95MCT) ceramics with V2O5,Co2O3 and ZnO oxide additives were prepared by the conven-tional solid-state route.Effects of 95MCT ceramics with oxide additives on the sintering characteristics and dielectric properties were investigated.The results indicate that MgTiO3 and CaTiO3 are the main crystal phases of 95MCT ceramics with V2O5,Co2O3 and ZnO oxide additives,and V2O5,Co2O3 and ZnO additives can effectively prevent the second phase Mg2TiO5 from forming.Doping with V2O5,Co2O3 and ZnO oxide,the sintering temperature of 95MCT ceramics can be lowered,the densification can be improved,the dielectric loss can be decreased,and the temperature coefficient can be adjusted.The ZnO oxide additives can effectively lower the sintering temperature of 95MCT ceramics to as low as 1 250 ℃,and the ceramics possess a relative dielectric constant of 21.7,a sin-tering density of 3.8 g/cm3(98.4% of theoretical density),a dielectric loss about 10–5,and a temperature coefficient of 0.12×10–5/℃.
|
[1]王康宋,罗谰,陈玮,等.Al2O3添加剂对合成MgTiO3陶瓷相组成及介电性能的影响[J].无机材料学报,2002,17(3):509–514.WANG Kangsong,LUO Lan,CHEN Wei,et al.J Inorg Mater(in Chi-nese),2002,17(3):509–514. [2]HUANG Chengliang,SHEN Chun-Hsu,LI Bingjing,et al.Effect ofB2O3 additives on sintering and microwave dielectric behaviors of0.66Ca(Mg1/3?Nb2/3)O3–0.34CaTiO3 ceramics[J].J Alloy Compd,2007,7:63. [3]杨辉,张启龙,王家邦,等.微波介质陶瓷及器件研究进展[J].硅酸盐学报,2003,31(10):965–973.YANG Hui,ZHANG Qilong,WANG Jiabang,et al.J Chin Ceram Soc(in Chinese),2003,31(10):965–973. [4]PALADINO A E.Temperature-compensated MgTi2O5–TiO2 dielectric[J].Jama-Jam Med Assoc,1971,54(3):168–171. [5]HUANG Chengliang,WENG Minghung.Improved high Q value ofMgTiO3–CaTiO3 microwave dielectric ceramics at low sintering tem-perature[J].Mater Res Bull,2001,36:2 741–2 750. [6]JANTUNEN Heli,RAUTIOAHO Risto,UUSIMAKI Antti,et al.Compositions of MgTiO3–CaTiO3 ceramics with two borosilicateglasses for LTCC technology[J].J Eur Ceram Soc,2000,20:2 331–2 336. [7]童建喜,张启龙,杨辉,等.掺LiO–B2O3–SiO2玻璃低温烧结MgTiO3–CaTiO3陶瓷及微波介电性能[J].硅酸盐学报,2006,34(11):1 335–1 340.TONG Jianxi,ZHANG Qilong,YANG Hui,et al.J Chin Ceram Soc(in Chinese),2006,34(11):1 335–1 340. [8]LAING R H,DONG X L,CHEN Y,et al.Effect of La2O3 doping onthe tunable and dielectric properties of BST/MgO composite for mi-crowave tunable application[J].Macromol Chem Phys,2006(95):222–228. [9]SHANNON R D.Revised ejective ionic radii and systematic studies ofinteratomic distance in halides and chalcogenides[J].ActacrystallogrA,1976,A32:751. [10]HUANG Chengliang,SHEN Chun-Hsu,PAN Chung-Long.Charac-terization and dielectric behavior of V2O5-doped MgTiO3–CaTiO3 ce-ramic system at microwave frequency[J].Mater Sci Eng,2007,45:91–96. [11]WOERMANN Eduard,MUAN Arnulf.Phase equilibria in the systemCaO–Cobalt oxide in air[J].J Inorg Nucl Chem,1970,32:1 455–1 459. [12]CABALLERO A C,FERNANDEZ J F,MOURE C,et al.ZnO-DopedBaTiO3:microstructure and electrical properties[J].J Eur Ceram Soc,1997,17(4):513–523. [13]SHANNON R D,Dielectric polarizabilities of ions in oxides andfluorides[J].J Appl Phys,1993,73(1):348–366.
|