[1] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J Mater Res, 1992, 7(6): 1564-1583. [2] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J Mater Res, 2004, 19(1): 3-20. [3] SORELLI L, CONSTANTINIDES G, ULM F-J, et al. The nano-me- chanical signature of ultra high performance concrete by statistical nanoindentation techniques [J]. Cem Concr Res, 2008, 38(12): 1447- 1456. [4] CONSTANTINIDES G, ULM F-J. The nanogranular nature of C-S-H [J]. J Mech Phys Solids, 2007, 55(1): 64-90. [5] MILLER M, BOBKO C, VANDAMME M, et al. Surface roughness criteria for cement paste nanoindentation [J]. Cem Concr Res, 2008, 38(4): 467-476. [6] BOBJI M S, BISWAS S K. Deconvolution of hardness from data obtained from nanoindentation of rough surfaces [J]. J Mater Res, 1999, 14(6): 2259-2268. [7] KIM J U, LEE J J, LEE Y H, et al. Surface roughness effect in instrumented indentation: a simple contact depth model and its verification [J]. J Mater Res, 2006, 21(12): 2975-2978. [8] KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube-cement nanocomposites [J]. Cem Concr Compos, 2010, 31(2): 110-115. [9] MONDAL P, SHAH S P, MARKS L D. Nanoscale characterization of cementitious materials [J]. ACI Mater J, 2008, 105(2): 174-179. [10] VANDAMME M, ULM F-J, FONOLLOSA P. Nanogranular packing of C-S-H at substochiometric conditions [J]. Cem Concr Res, 2010, 40(1): 14-26. [11] NEMECEK J. Creep effects in nanoindentation of hydrated phases cement pastes [J]. Mater Charact, 2009, 60(9): 1028-1034. [12] DELAFARGUE A, ULM F-J. Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters [J]. Int J Solids Struct, 2004, 41: 7351-7360. [13] VANDAMME M, ULM F-J. Viscoelastic solutions for conical indentation [J]. Int J Sol Struct, 2006, 43: 3142-3165. [14] GANNEAU F P, CONSTANTINIDES G, ULM F-J. Dual-Indentation technique for the assessment of strength properties of cohesive-fric- tional material [J]. Int J Solids Struct, 2006, 43: 1727-1745. [15] ULM F-J, VANDAMME M, BOBKO C, et al. Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale [J]. J Am Ceram Soc, 2007, 90(9): 2677-2692. [16] RICHARDSON I G. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, b-dicalcium silicate, portland cement, and blends of portland cement with blast-furnace slag metakaolin or silica fume [J]. Cem Concr Res, 2004, 34: 1733-1777. [17] ULM F-J, VANDAMME M, JENNINGS H M, et al. Does microstructure matter for statistical nanoindentation techniques? [J]. Cem Concr Compos, 2010, 32(1): 92-99. [18] TRTIK P, MüNCH B, LURA P. A critical examination of nanoindentation on model materials and hardened cement pastes based on virtual experiments [J]. Cem Concr Compos, 2009, 31: 705-714. [19] WANG X H, JACOBSEN S, HE J Y. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar [J]. Cem Concr Res, 2009, 39(8): 701-715. [20] NěME?EK J, ?MILAUER V, KOPECKY L. Characterization of alkali-Activated fly-ash by nanoindentation [C]//BITTNAR Z, BARTOS P J M, NěME?EK J, et al. Nanotechnology in construction 3: Proceedings of the NICOM3. Berlin Heidelberg: Springer, 2009: 337-343. [21] CHEN J J, SORELLI L, VANDAMME M, et al. A coupled nanoindentation/SEM-EDX study on low water/cement ratio Portland cement paste: Evidence for C-S-H/CH nanocomposites [J]. J Am Ceram Soc, 2010, 93(5): 1484-1493. [22] Acker P. Micromechanical analysis of creep and shrinkage mechanisms [C]//Proc of the Sixth International Conference CONCREEP6: Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi- Brittle Materials, Oxford, UK, 2001: 15-25. [23] CONSTANTINIDES G, ULM F-J. The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling [J]. Cem Concr Res, 2004, 34(1): 67-80. [24] DEJONG M J, ULM F-J. The nanogranular behavior of C-S-H at elevated temperatures (up to 700C)[J]. Cem Concr Res, 2007, 37(1): 1-12. [25] ZHU W, HUGHES J J, Bicanic N, et al. Nanoindentation mapping of mechanical properties of cement paste and natural rocks [J]. Mater Charact, 2007, 58(11-12): 1189-1198. [26] MONDAL P, SHAH S P, MARKS L. A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials [J]. Cem Concr Res, 2007, 37(10): 1440-1444. [27] VELEZ K, MAXIMILIEN S, DAMIDOT D, et al. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker [J]. Cem Concr Res, 2001, 31(4): 555-561. [28] ZHU W, BARTOS P J M. Application of depth-sensing microindentation testing to study of interfacial transition zone in reinforced concrete [J]. Cem Concr Res, 2000, 30(8): 1299-1304. [29] ZHU W, BARTOS P J M. Assessment of interfacial microstructure and bond properties in aged GRC using a novel microindentation method [J]. Cem Concr Res, 1997, 27: 1701-1711. [30] CHAN Y, CHU S. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete [J]. Cem Concr Res, 2004, 34(7): 1167-1172. [31] COPUROGLU O, SCHLANGEN E. Modeling of frost salt scaling [J]. Cem Concr Res, 2007, 38(1): 27-39. [32] CONSTANTINIDES G, CHANDRAN RAVI K S, ULM F-J, et al. Grid indentation analysis of composite microstructure and mechanics: principles and validation [J]. Mater Sci Eng A, 2006, 430(1-2): 189-202. [33] RANDALL N X, VANDAMME M, ULM F-J. Nanoindentation analysis as a two dimensional tool for mapping the mechanical properties of complex surfaces [J]. J Mater Res, 2009, 24(3): 679-690. [34] DELESSE M. Procédé mécanique pour déterminer la composition des roches [J]. C R Acad, 1847, 25: 544-547. [35] CONSTANTINIDES G, ULM F-J, VLIET K Van. On the use of nanoindentation for cementitious materials [J]. Mater Struct, 2003, 36(3): 191-196. [36] TENNIS P D, JENNINGS H M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement hydrate in pastes [J]. Cem Concr Res, 2000, 30(6): 855-863. [37] JENNING H M. A model for the microstructure of calcium silicate cement paste [J]. Cem Concr Res, 2000, 30: 101-116. [38] JENNINGS H M. Refinements to colloid model of C-S-H in cement: CM-Ⅱ[J]. Cem Concr Res, 2008, 38(3): 275-289. [39] BERNARD O, ULM F-J, LEMARCHAND E. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials [J]. Cem Concr Res, 2003, 33(9): 1293-1309. [40] FAMY C, BROUGH A R, TAYLOR H F W. The C-S-H gel of portland cement mortars: part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions [J]. Cem Concr Res, 2003, 33: 1389-1398. [41] RICHARDSON I G, GROVES G W. Microstructure and microanalysis of hardened ordinary portland-cement pastes [J]. J Mater, 1993, 28(1): 265-277. [42] ALLEN A J, THOMAS J J, JENNINGS H M. Composition and density of nanoscale calcium-silicate-hydrate in cement [J]. Nat Mater, 2007, 6(4): 311-316. [43] HUGHES J J, TRTIK P. Micro-mechanical properties of cement paste measured by depth-sensing nanoindentation: A preliminary correlation of physical properties with phase type [J]. Mater Charact, 2004, 53(2-4): 223-231.
|