首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
纳米氧化物太阳能电池研究进展
作者:林红 焦星剑 赵晓冲 郝锋 李建保 
单位:清华大学材料科学与工程系 新型陶瓷与精细工艺国家重点实验室 北京 100084 
关键词:染料敏化太阳能电池 纳米氧化物 低温 一维 电子传递和复合 
分类号:TB321;TB383;TM914.4
出版年,卷(期):页码:2011,39(7):23-28
DOI:
摘要:

介绍了新型低成本纳米氧化物染料敏化太阳能电池的优势特点及基本原理。纳米氧化物材料在染料敏化太阳能电池的光阳极和电解质中有着特殊的应用,在电池中起到了非常关键的作用。围绕电池中光阳极和电解质所用的纳米氧化物材料,结合清华大学科研实例,综述了光阳极用纳米氧化物的制备方法及性能,分析了电子传递和复合对电池性能的影响,以及纳米材料的包覆对减少电子复合的作用,指出一维纳米氧化物材料可以形成光阳极中的电荷通道。对于低温纳米氧化物薄膜成膜方法及其在柔性太阳能电池中的应用也做了详细评述。另外,还介绍了纳米氧化物在准固态太阳能电池中的应用。

online click open
redirect how to cheat why women cheat on men they love
why do wife cheat on husband why wifes cheat how to cheat wife

The superiority and the principle of a novel, low-cost solar cells based on dye-sensitized nano-oxides (DSCs) are represented. Nano-oxides have some special applications in the photoanodes and electrolytes of DSCs. Based on our recent work on DSCs, the developments on nano-oxides for photoanodes and electrolytes are reviewed. The preparation methods of nano-oxides used in photoanodes are introduced, and the performance, such as electron transfer and recombination in photoanodes are discussed. Low-temperature methods and performances of nano-oxides used in flexible solar cells are reviewed in detail. The quasi-solid state solar cells based on nano-oxides are also presented.

online women that cheat with married men married woman looking to cheat
read percentage of women who cheat signs of infidelity
open reasons why married men cheat My husband cheated on me
基金项目:
科技部国际合作项目(2010DFB23160);国家自然科学基金(50672041);北京市自然科学基金(2062013)资助项目。
作者简介:
博士,副教授
married cheaters how many women cheat click
how to catch a cheater redirect go
参考文献:

[1] OREGAN B, GRATZEL M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353 (6346): 737-740. [2] GRATZEL M. Photoelectrochemical cells [J]. Nature, 2001, 414(6861): 338-344. [3] KAKIUCHI K, HOSONO E, FUJIHARA S. Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719 [J]. J Photoch Photobio A, 2006,179(1-2): 81-86. [4] RENSMO H, KEIS K, LINDSTROM H, et al. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes [J]. J Phys Chem B, 1997, 101(14): 2598-2601. [5] GUO P, AEGERTER M A. RU(II) sensitized Nb2O5 solar cell made by the sol-gel process [J]. Thin Solid Films, 1999, 351(1/2): 290-294. [6] LE VIET A, JOSE R, REDDY M V, et al. Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph [J]. J Phys Chem C, 2010, 114(49): 21795-21800. [7] FERRERE S, ZABAN A, GREGG B A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives [J]. J Phys Chem B, 1997, 101(23): 4490-4493. [8] GUBBALA S, CHAKRAPANI V, KUMAR V, et al. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires [J]. Adv Funct Mater, 2008, 18(16): 2411-2418. [9] GRATZEL M. The advent of mesoscopic injection solar cells [J]. Prog Photovoltaics, 2006, 14: 429-442. [10] GRATZEL M. Solar energy conversion by dye-sensitized photovoltaic cells [J]. Inorg Chem, 2005, 44(20): 6841-6851. [11] ITO S, LISKA P, COMTE P, et al. Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells [J]. Chem Commun, 2005(34): 4351-4353. [12] O'REGAN B C, DURRANT J R, SOMMELING P M, et al. Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit [J]. J Phys Chem C, 2007, 111: 14001-14010. [13] WANG Z S, ZHOU G. Effect of surface protonation of TiO2 on charge recombination and conduction band edge movement in dye-sensitized solar cells [J]. J Phys Chem C, 2009, 113(34): 15417-15421. [14] HAO S C, WU J H, FAN L Q, et al. The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell [J]. Sol Energy, 2004, 76(6): 745-750. [15] KITIYANAN A, YOSHIKAWA S. The use of ZrO2 mixed TiO2 nanostructures as efficient dye-sensitized solar cells' electrodes [J]. Mater Lett, 2005, 59(29/30): 4038-4040. [16] FENG X J, SHANKAR K, PAULOSE M, et al. Tantalum-doped titanium dioxide nanowire arrays for dye-sensitized solar cells with high open-circuit voltage [J]. Angew Chem Int Edit, 2009, 48(43): 8095- 8098. [17] DE JONGH P E, VANMAEKELBERGH D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles [J]. Phys Rev Lett, 1996, 77(16): 3427-3430. [18] SCHLICHTHORL G, HUANG S Y, SPRAGUE J, et al. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy [J]. J Phys Chem B, 1997, 101(41): 8141-8155. [19] THAVASI V, RENUGOPALAKRISHNAN V, JOSE R, et al. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells [J]. Mater Sci Eng R, 2009, 63(3): 81-99. [20] PALOMARES E, CLIFFORD J N, HAQUE S A, et al. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films [J]. Chem Commun, 2002(14): 1464-1465. [21] WU S, HAN H W, TAI Q D, et al. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering [J]. Nanotechnology, 2008, 19(21): 215704. [22] CHEN S G, CHAPPEL S, DIAMANT Y, et al. Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells [J]. Chem Mater, 2001, 13(12): 4629-4634. [23] KIM J Y, LEE S, NOH J H, et al. Enhanced photovoltaic properties of overlayer-coated nanocrystalline TiO2 dye-sensitized solar cells (DSSCs) [J]. J Electroceram, 2009, 23(2-4): 422-425. [24] LEE S, KIM J Y, YOUN S H, et al. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell [J]. Langmuir, 2007, 23(23): 11907-11910. [25] 庄东填, 林红, 李鑫, 等. 染料敏化太阳能电池中TiO2光阳极的包覆效果[J]. 硅酸盐学报, 2010(9): 1848-1851. ZHUANG Dongtian, LIN Hong, LI Xin, et al. J Chin Ceram Soc (in Chinese), 2010(9): 1848-1851. [26] GRATZEL M. Perspectives for dye-sensitized nanocrystalline solar cells [J]. Prog Photovoltaics, 2000, 8(1): 171-185. [27] MOR G K, SHANKAR K, PAULOSE M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells [J]. Nano Lett, 2006, 6(2): 215-218. [28] VARGHESE O K, PAULOSE M, GRIMES C A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells [J]. Nat Nanotechnol, 2009, 4(9): 592-597. [29] SHANKAR K, MOR G K, PRAKASAM H E, et al. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells [J]. Nanotechnology, 2007, 18(6): 065705. [30] LEI B X, LIAO J Y, ZHANG R, et al. Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells [J]. J Phys Chem C, 2010, 114(35): 15228-15233. [31] WANG W L, LIN H, LI J B, et al. Formation of titania nanoarrays by hydrothermal reaction and their application in photovoltaic cells [J]. J Am Ceram Soc, 2008, 91(2): 628-631. [32] PARK J H, JUN Y, YUN H G, et al. Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate [J]. J Electrochem Soc, 2008, 155(7): F145-F149. [33] KUANG D, BRILLET J, CHEN P, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells [J]. ACS NANO, 2008, 2(6): 1113-1116. [34] LINDSTROM H, HOLMBERG A, MAGNUSSON E, et al. A new method to make dye-sensitized nanocrystalline solar cells at room temperature [J]. J Photoch Photobio A, 2001, 145(1/2): 107-112. [35] UCHIDA S, TOMIHA M, MASAKI N, et al. Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28 GHz microwave irradiation [J]. Sol Energy Mat Sol C, 2004, 81(1): 135-139. [36] GUTIERREZ-TAUSTE D, ZUMETA I, VIGIL E, et al. New low- temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation [J]. J Photoch Photobio A, 2005, 175(2/3): 165-171. [37] MIYASAKA T, KIJITORI Y. Low-temperature fabrication of dye- sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers [J]. J Electrochem Soc, 2004, 151(11): A1767-A1773. [38] KIJITORI Y, IKEGAMI M, MIYASAKA T. Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder- free coating of mesoscopic titania pastes [J]. Chem Lett, 2007, 36(1): 190-191. [39] YAMAGUCHI T, TOBE N, MATSUMOTO D, et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6% [J]. Sol Energy Mater Sol C, 2010: 812-816. [40] LI X, LIN H, LI J B, et al. Chemical sintering of graded TiO2 film at low-temperature for flexible dye-sensitized solar cells [J]. J Photoch Photobio A, 2008, 195(2/3): 247-253. [41] LI X, LIN H, LI J B, et al. A numerical simulation and impedance study of the electron transport and recombination in binder-free TiO2 film for flexible dye-sensitized solar cells [J]. J Phys Chem C, 2008, 112(35): 13744-13753. [42] 赵晓冲, 杨盼, 林红, 等. 柔性染料敏化太阳能电池材料制备工艺参数的优化[J]. 硅酸盐学报, 2010(01): 25-28. ZHAO Xiaochong, YANG Pan, LIN Hong, et al. J Chin Ceram Soc (in Chinese), 2010(1): 25-28 [43] WANG P, ZAKEERUDDIN S M, COMTE P, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells [J]. J Am Chem Soc, 2003, 125(5): 1166- 1167. [44] XIA J B, LI F Y, HUANG C H. Novel quasi-solid-state dye-sensitized solar cell based on monolayer capped TiO2 nanoparticles framework materials [J]. Chin J Chem, 2004, 22(7): 687-690. [45] KATO T, OKAZAKI A, HAYASE S. Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells [J]. Chem Commun, 2005(3): 363-365. [46] USUI H, MATSUI H, TANABE N, et al. Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes [J]. J Photochem Photobiol A, 2004, 164(1-3): 97-101. [47] LEE Y L, SHEN Y J, YANG Y M. A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications [J]. Nanotechnology, 2008, 19(45). [48] YANG Y, ZHOU C, XU S, et al. Optimization of a quasi-solid-state dye-sensitized solar cell employing a nanocrystal-polymer composite electrolyte modified with water and ethanol [J]. Nanotechnology, 2009, 20(10): 105204. [49] WANG N, LIN H, LI J B, et al. Improved quasi-solid dye-sensitized solar cells by composite ionic liquid electrolyte including layered alpha-zirconium phosphate [J]. Appl Phys Lett, 2006, 89(19): 194101- 194104. [50] WANG N, LIN H, LI X, et al. Enhanced exchange current density and diffusion coefficient of iodide-based liquid electrolyte by layered alpha-zirconium phosphate [J]. Electrochem Commun, 2006, 8(6): 946-950. [51] HAO F, LIN H, LI X, et al. Enhancement of photocurrent of dye- sensitized solar cell by composite liquid electrolyte including NiO nanosheets [J]. J Nanosci Nanotechnol, 2010, 10(11): 7390-7393.

married cheaters why some women cheat click
open cheat women go
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com