[1] OREGAN B, GRATZEL M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353 (6346): 737-740. [2] GRATZEL M. Photoelectrochemical cells [J]. Nature, 2001, 414(6861): 338-344. [3] KAKIUCHI K, HOSONO E, FUJIHARA S. Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719 [J]. J Photoch Photobio A, 2006,179(1-2): 81-86. [4] RENSMO H, KEIS K, LINDSTROM H, et al. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes [J]. J Phys Chem B, 1997, 101(14): 2598-2601. [5] GUO P, AEGERTER M A. RU(II) sensitized Nb2O5 solar cell made by the sol-gel process [J]. Thin Solid Films, 1999, 351(1/2): 290-294. [6] LE VIET A, JOSE R, REDDY M V, et al. Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph [J]. J Phys Chem C, 2010, 114(49): 21795-21800. [7] FERRERE S, ZABAN A, GREGG B A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives [J]. J Phys Chem B, 1997, 101(23): 4490-4493. [8] GUBBALA S, CHAKRAPANI V, KUMAR V, et al. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires [J]. Adv Funct Mater, 2008, 18(16): 2411-2418. [9] GRATZEL M. The advent of mesoscopic injection solar cells [J]. Prog Photovoltaics, 2006, 14: 429-442. [10] GRATZEL M. Solar energy conversion by dye-sensitized photovoltaic cells [J]. Inorg Chem, 2005, 44(20): 6841-6851. [11] ITO S, LISKA P, COMTE P, et al. Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells [J]. Chem Commun, 2005(34): 4351-4353. [12] O'REGAN B C, DURRANT J R, SOMMELING P M, et al. Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit [J]. J Phys Chem C, 2007, 111: 14001-14010. [13] WANG Z S, ZHOU G. Effect of surface protonation of TiO2 on charge recombination and conduction band edge movement in dye-sensitized solar cells [J]. J Phys Chem C, 2009, 113(34): 15417-15421. [14] HAO S C, WU J H, FAN L Q, et al. The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell [J]. Sol Energy, 2004, 76(6): 745-750. [15] KITIYANAN A, YOSHIKAWA S. The use of ZrO2 mixed TiO2 nanostructures as efficient dye-sensitized solar cells' electrodes [J]. Mater Lett, 2005, 59(29/30): 4038-4040. [16] FENG X J, SHANKAR K, PAULOSE M, et al. Tantalum-doped titanium dioxide nanowire arrays for dye-sensitized solar cells with high open-circuit voltage [J]. Angew Chem Int Edit, 2009, 48(43): 8095- 8098. [17] DE JONGH P E, VANMAEKELBERGH D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles [J]. Phys Rev Lett, 1996, 77(16): 3427-3430. [18] SCHLICHTHORL G, HUANG S Y, SPRAGUE J, et al. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy [J]. J Phys Chem B, 1997, 101(41): 8141-8155. [19] THAVASI V, RENUGOPALAKRISHNAN V, JOSE R, et al. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells [J]. Mater Sci Eng R, 2009, 63(3): 81-99. [20] PALOMARES E, CLIFFORD J N, HAQUE S A, et al. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films [J]. Chem Commun, 2002(14): 1464-1465. [21] WU S, HAN H W, TAI Q D, et al. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering [J]. Nanotechnology, 2008, 19(21): 215704. [22] CHEN S G, CHAPPEL S, DIAMANT Y, et al. Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells [J]. Chem Mater, 2001, 13(12): 4629-4634. [23] KIM J Y, LEE S, NOH J H, et al. Enhanced photovoltaic properties of overlayer-coated nanocrystalline TiO2 dye-sensitized solar cells (DSSCs) [J]. J Electroceram, 2009, 23(2-4): 422-425. [24] LEE S, KIM J Y, YOUN S H, et al. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell [J]. Langmuir, 2007, 23(23): 11907-11910. [25] 庄东填, 林红, 李鑫, 等. 染料敏化太阳能电池中TiO2光阳极的包覆效果[J]. 硅酸盐学报, 2010(9): 1848-1851. ZHUANG Dongtian, LIN Hong, LI Xin, et al. J Chin Ceram Soc (in Chinese), 2010(9): 1848-1851. [26] GRATZEL M. Perspectives for dye-sensitized nanocrystalline solar cells [J]. Prog Photovoltaics, 2000, 8(1): 171-185. [27] MOR G K, SHANKAR K, PAULOSE M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells [J]. Nano Lett, 2006, 6(2): 215-218. [28] VARGHESE O K, PAULOSE M, GRIMES C A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells [J]. Nat Nanotechnol, 2009, 4(9): 592-597. [29] SHANKAR K, MOR G K, PRAKASAM H E, et al. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells [J]. Nanotechnology, 2007, 18(6): 065705. [30] LEI B X, LIAO J Y, ZHANG R, et al. Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells [J]. J Phys Chem C, 2010, 114(35): 15228-15233. [31] WANG W L, LIN H, LI J B, et al. Formation of titania nanoarrays by hydrothermal reaction and their application in photovoltaic cells [J]. J Am Ceram Soc, 2008, 91(2): 628-631. [32] PARK J H, JUN Y, YUN H G, et al. Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate [J]. J Electrochem Soc, 2008, 155(7): F145-F149. [33] KUANG D, BRILLET J, CHEN P, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells [J]. ACS NANO, 2008, 2(6): 1113-1116. [34] LINDSTROM H, HOLMBERG A, MAGNUSSON E, et al. A new method to make dye-sensitized nanocrystalline solar cells at room temperature [J]. J Photoch Photobio A, 2001, 145(1/2): 107-112. [35] UCHIDA S, TOMIHA M, MASAKI N, et al. Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28 GHz microwave irradiation [J]. Sol Energy Mat Sol C, 2004, 81(1): 135-139. [36] GUTIERREZ-TAUSTE D, ZUMETA I, VIGIL E, et al. New low- temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation [J]. J Photoch Photobio A, 2005, 175(2/3): 165-171. [37] MIYASAKA T, KIJITORI Y. Low-temperature fabrication of dye- sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers [J]. J Electrochem Soc, 2004, 151(11): A1767-A1773. [38] KIJITORI Y, IKEGAMI M, MIYASAKA T. Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder- free coating of mesoscopic titania pastes [J]. Chem Lett, 2007, 36(1): 190-191. [39] YAMAGUCHI T, TOBE N, MATSUMOTO D, et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6% [J]. Sol Energy Mater Sol C, 2010: 812-816. [40] LI X, LIN H, LI J B, et al. Chemical sintering of graded TiO2 film at low-temperature for flexible dye-sensitized solar cells [J]. J Photoch Photobio A, 2008, 195(2/3): 247-253. [41] LI X, LIN H, LI J B, et al. A numerical simulation and impedance study of the electron transport and recombination in binder-free TiO2 film for flexible dye-sensitized solar cells [J]. J Phys Chem C, 2008, 112(35): 13744-13753. [42] 赵晓冲, 杨盼, 林红, 等. 柔性染料敏化太阳能电池材料制备工艺参数的优化[J]. 硅酸盐学报, 2010(01): 25-28. ZHAO Xiaochong, YANG Pan, LIN Hong, et al. J Chin Ceram Soc (in Chinese), 2010(1): 25-28 [43] WANG P, ZAKEERUDDIN S M, COMTE P, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells [J]. J Am Chem Soc, 2003, 125(5): 1166- 1167. [44] XIA J B, LI F Y, HUANG C H. Novel quasi-solid-state dye-sensitized solar cell based on monolayer capped TiO2 nanoparticles framework materials [J]. Chin J Chem, 2004, 22(7): 687-690. [45] KATO T, OKAZAKI A, HAYASE S. Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells [J]. Chem Commun, 2005(3): 363-365. [46] USUI H, MATSUI H, TANABE N, et al. Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes [J]. J Photochem Photobiol A, 2004, 164(1-3): 97-101. [47] LEE Y L, SHEN Y J, YANG Y M. A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications [J]. Nanotechnology, 2008, 19(45). [48] YANG Y, ZHOU C, XU S, et al. Optimization of a quasi-solid-state dye-sensitized solar cell employing a nanocrystal-polymer composite electrolyte modified with water and ethanol [J]. Nanotechnology, 2009, 20(10): 105204. [49] WANG N, LIN H, LI J B, et al. Improved quasi-solid dye-sensitized solar cells by composite ionic liquid electrolyte including layered alpha-zirconium phosphate [J]. Appl Phys Lett, 2006, 89(19): 194101- 194104. [50] WANG N, LIN H, LI X, et al. Enhanced exchange current density and diffusion coefficient of iodide-based liquid electrolyte by layered alpha-zirconium phosphate [J]. Electrochem Commun, 2006, 8(6): 946-950. [51] HAO F, LIN H, LI X, et al. Enhancement of photocurrent of dye- sensitized solar cell by composite liquid electrolyte including NiO nanosheets [J]. J Nanosci Nanotechnol, 2010, 10(11): 7390-7393.
|