[1] NAN C W, BICHURIN M I, DONG S, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions [J]. J Appl Phys, 2008, 103: 031101(1–35).
[2] FIEBIG M. Revival of the magnetoelectric effect [J]. J Phys D Appl Phys, 2005, 38: R123–R152.
[3] 林元华, 姜庆辉, 何泓材, 等. 多铁性氧化物基磁电材料的制备及性能[J]. 硅酸盐学报, 2007, 35(1): 10–21.
LIN Yuanhua, JIANG Qinghui, HE Hongcai, et al. J Chin Ceram Soc (in Chinese), 2007, 35(1): 10–21.
[4] SPALDIN N A, FIEBIG M. The renaissance of magnetoelectric multiferroics [J]. Science, 2005, 309: 391–392.
[5] CHU Y-H, MARTIN L W, HOLCOMB M B, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic [J]. Nat Mater, 2008, 7: 478–482.
[6] HAMBE M, PETRARU A, PERTSEV N A, et al. Crossing an interface: Ferroelectric control of tunnel currents in magnetic complex oxide heterostructures [J]. Adv Funct Mater, 2010, 20: 2436–2441.
[7] NAN C-W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases [J]. Phys Rev B, 1994, 50: 6082–6088.
[8] HUR N, PARK S, SHARMA P A, et al. Colossal magnetodielectric effects in DyMn2O5 [J]. Phys Rev Lett, 2004, 93: 107207(1–4).
[9] ZHAI J, DONG S, XING Z, et al. Geomagnetic sensor based on giant magnetoelectric effect [J]. Appl Phys Lett, 2007, 91: 123513(1–3).
[10] SCOTT J F. Multiferroic memories [J]. Nat Mater, 2007, 6: 256–257.
[11] BIBES M, BARTH L MY A. Multiferroics: Towards a magnetoelectric memory [J]. Nat Mater, 2008, 7: 425–426.
[12] USTINOV A B, SRINIVASAN G, KALINIKOS B A. Ferrite-ferroelec- tric hybrid wave phase shifters [J]. Appl Phys Lett, 2007, 90: 031913(1–3).
[13] TATARENKO A S, GHEEVARUGHESE V, SRINIVASAN G. Magnetoelectric microwave band pass filter [J]. Electron Lett, 2006, 42: 540– 541.
[14] SCIENCE'S Editors. Breakthrough of the year: Areas to watch [J]. Science, 2007, 318: 1848–1849.
[15] EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials [J]. Nature, 2006, 442: 759–765.
[16] MA J, HU J, LI Z, et al. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films [J]. Adv Mater, 2011, 23: 1062–1087.
[17] SPALDIN N A, CHEONG S-W, RAMESH R. Multiferroics: Past, present, and future [J]. Phys Today, 2010, 63: 38–43.
[18] PRINZ G A. Magnetoelectronics [J]. Science, 1998, 282: 1660–1663.
[19] 石雷, 白飞明. 双钙钛矿型室温多铁性材料的研究进展[J]. 硅酸盐学报, 2011, 39(3): 550–557.
SHI Lei, BAI Feiming. J Chin Cecam Soc (in Chinese), 2011, 39(3): 550–557.
[20] 段纯刚. 磁电效应研究进展[J]. 物理学进展, 2009, 29: 215–238.
DUAN Chungang. Prog Phys (in Chinese), 2009, 29: 215–238.
[21] 王克锋, 刘俊明, 王雨. 单相多铁性材料—极化和磁性序参量的耦合与调控[J]. 科学通报, 2008, 53: 1098–1135.
WANG Kefeng, LIU Junming, WANG Yu. Chin Sci Bull (in Chinese), 2008, 53: 1098–1135.
[22] GAJEK M, BIBES M, FUSIL S, et al. Tunnel junctions with multiferroic barriers [J]. Nat Mater, 2007, 6: 296–302.
[23] BAEK S H, JANG H W, FOLKMAN C M, et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices [J]. Nat Mater, 2010, 9: 309–314.
[24] SCHMID H. Multi-ferroic magnetoelectrics [J]. Ferroelectrics, 1994, 162: 317–338.
[25] 何泓材, 林元华, 南策文. 多铁性磁电复合薄膜[J]. 科学通报, 2008, 53: 1136–1148.
HE Hongcai, LIN Yuanhua, NAN Cewen. Chin Sci Bull (in Chinese), 2008, 53: 1136–1148.
[26] MARTIN L W, CRANE S P, CHU Y-H, et al. Multiferroics and magnetoelectrics: thin films and nanostructures [J]. J Phys Condens Matter, 2008, 20: 434220(1–13).
[27] YAN L, BAI F, LI J, et al. Nano-structures in perovskite-ferrite two phase composite epitaxial thin films [J]. Philos Mag, 2010, 90: 103– 111.
[28] LEBEUGLE D, COLSON D, FORGET A, et al. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals [J]. Phys Rev B, 2007, 76: 024116(1–8).
[29] WU L, SONG Z, RAO F, et al. Multistate storage through successive phase change and resistive change [J]. Appl Phys Lett, 2009, 94: 243115(1–3).
[30] HUR N, PARK S, SHARMA P A, et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields [J]. Nature, 2004, 429: 392–395.
[31] 施展, 王翠萍, 刘兴军, 等. 基于磁电复合材料的四态存储器[J]. 科学通报, 2008, 53(10): 1177–1179.
SHI Zhan, WANG Cuiping, LIU Xingjun, et al. Chin Sci Bull (in Chinese), 2008, 53(10): 1177–1179.
[32] SHI Z, WANG C, LIU X, et al. A four-state memory cell based on magnetoelectric composite [J]. Chin Sci Bull, 2008, 53(14): 2135– 2138.
[33] YANG F, ZHOU Y C, TANG M H, et al. Eight-logic memory cell based on multiferroic junctions [J]. J Phys D Appl Phys, 2009, 42: 072004(1–6).
[34] YANG F, TANG M H, YE Z, et al. Eight logic states of tunneling magnetoelectroresistance in multiferroic tunnel junctions [J]. J Appl Phys, 2007, 102: 044504(1–5).
[35] ZHANG L B, TANG M H, YANG F. Sixteen resistive states of a tunnel junction with a composite barrier [J]. Eur Phys J Appl Phys, 2010, 51: 10604(1–5).
[36] LI Z, WANG J, LIN Y, et al. A magnetoelectric memory cell with coercivity state as writing data bit [J]. Appl Phys Lett, 2010, 96: 162505(1–3).
[37] WANG J, HU J, WANG H, et al. Electric-field modulation of magnetic properties of Fe films directly grown on BiScO3–PbTiO3 ceramics [J]. J Appl Phys, 2010, 107: 083901(1–5).
[38] ZOU T, WANG X, WANG H, et al. Bulk dense fine-grain (1–x)BiScO3– xPbTiO3 ceramics with high piezoelectric coefficient [J]. Appl Phys Lett, 2008, 93: 192913(1–3).
[39] OVERBY M, CHERNYSHOV A, ROKHINSON L P, et al. GaMnAs- based hybrid multiferroic memory device [J]. Appl Phys Lett, 2008, 92: 192501(1–3).
[40] WELP U, VLASKO-VLASOV V K, LIU X, et al. Magnetic domain structure and magnetic anisotropy in Ga1–xMnxAs [J]. Phys Rev Lett, 2003, 90: 167206(1–4).
[41] LIU X, SASAKI Y, FURDYNA J K. Ferromagnetic resonance in Ga1–xMnxAs: Effects of magnetic anisotropy [J]. Phys Rev B, 2003, 67: 205204(1–9).
[42] MOSER A, TAKANO K, MARGULIES D T, et al. Magnetic recording: advancing into the future [J]. J Phys D Appl Phys, 2002, 35: R157– R167.
[43] CHAPPERT C, FERT A, VAN DAU F N. The emergence of spin electronics in data storage[J]. Nat Mater, 2007, 6: 813–823.
[44] VOPSAROIU M, BLACKBURN J, MUNIZ-PINIELLA A, et al. Multiferroic magnetic recording read head technology for 1 Tbit/in2 and beyond [J]. J Appl Phys, 2008, 103: 07F506(1–3).
[45] VOPSAROIU M, BLACKBURN J, CAIN M G. A new magnetic recording read head technology based on the magneto-electric effect [J]. J Phys D Appl Phys, 2007, 40: 5027–5033.
[46] ZHANG Y, LI Z, DENG C, et al. Demonstration of magnetoelectic read head of multiferroic heterostructures [J]. Appl Phys Lett, 2008, 92: 152510(1–3).
[47] DENG C, ZHANG Y, MA J, et al. Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3–NiFe2O4 composite thin films [J]. Acta Mater, 2007, 56: 405–412.
[48] ZHANG Y, DENG C, MA J, et al. Enhancement in magnetoelectric response in CoFe2O4–BaTiO3 heterostructure [J]. Appl Phys Lett, 2008, 92: 062911(1–3).
[49] BICHURIN M I, PETROV V M, SRINIVASAN G. Theory of low- frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites [J]. J Appl Phys, 2002, 92: 7681–7683.
[50] BICHURIN M I, PETROV V M, RYABKOV O V, et al. Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures [J]. Phys Rev B, 2005, 72: 060408(1–4).
[51] BANDIC Z Z, VICTORAI R H. Advances in magnetic data storage technologies [J]. Proc IEEE, 2008, 96: 1751–1753.
[52] KATTI R R, ZHU T. Attractive magnetic memories [J]. IEEE Circuits Device, 2001: 26–34.
[53] KRIEGER J H. Physical concepts of memory device operation based on piezoacoustic and pyroelectric properties of ferroelectric films [J]. J Appl Phys, 2009, 105: 061629(1–6).
[54] SETTER N, DAMJANOVIC D, ENG L, et al. Ferroelectric thin films: Review of materials, properties, and applications [J]. J Appl Phys, 2006, 100: 051606(1–46).
[55] BURR G W, BREITWISCH M J, FRANCESCHINI M, et al. Phase change memory technology [J]. J Vac Sci Technol B, 2010, 28: 223– 262. why married men cheat on their wives click here women cheat on men
|