首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
混凝土中钢筋腐蚀速率模型研究进展
作者:施锦杰 孙伟 
单位:东南大学材料科学与工程学院 江苏省土木工程材料重点实验室 南京 211189 
关键词:钢筋 混凝土 腐蚀速率模型 氧气扩散 混凝土电阻率 电化学模型 
分类号:TU 528.1, TG 174.3
出版年,卷(期):页码:2012,40(4):620-620
DOI:
摘要:

  要:预测混凝土中钢筋的腐蚀速率对腐蚀扩展阶段的发展非常重要,同时也能表征腐蚀导致的混凝土保护层开裂的时间。讨论了已有的钢筋腐蚀速率模型,包括经验模型、反应(氧气扩散与混凝土电阻率)控制模型和电化学模型。此外,根据以前的研究成果总结了钢筋腐蚀的时变性、局部腐蚀性与随机性等特征,并提出了准确预测腐蚀速率所需要解决的关键问题。

redirect why do women cheat on their husbands unfaithful husband
my wife cheated on me now what men and women husband cheat
open reasons why married men cheat My husband cheated on me
printable coupons for cialis outbackuav.com coupon for free cialis
amoxicillin amoxicillin amoxicillin

Abstract: The prediction of steel corrosion rate in concrete is of great importance in the corrosion propagation stage, which also characterizes the time to corrosion-induced crack of concrete cover. The existing corrosion rate models, i.e., empirical models, reaction-controlled models (oxygen diffusion and concrete resistivity) and electrochemical models, for corrosion rate of steel in reinforced concrete structures were reviewed. In addition, some features for steel corrosion such as time-varying, localized corrosion and probability of corrosion were summarized, and some critical issues need to be resolved for the accurately prediction of the corrosion rate of steel were proposed.

doxycycline doxycycline doxycycline
基金项目:
国家“973”计划(2009CB–623203)资助项目
作者简介:
第一作者:施锦杰(1983—),男,博士研究生。 通信作者:孙 伟(1935—),女,教授,博士生导师,中国工程院院士。
women want men infidelity signs how do i know if my wife cheated
redirect husband cheated unfaithful husband
how to catch a cheater online go
read cheat on husband signs of infidelity
abortion pill abortion pill abortion pill
参考文献:

[1]  RAUPACH M. Models for the propagation phase of reinforcement corrosion-an overview [J]. Mater Corros, 2006, 57(8): 605–613.

[2]  OTIENO M B, BEUSHAUSEN H D, ALEXANDER M G. Modelling corrosion propagation in reinforced concrete structures–A critical review [J]. Cem Concr Compos, 2011, 33(2): 240–245.

[3]  LIU T, WEYERS R W. Modeling the dynamic corrosion process in chloride contaminated concrete structures [J]. Cem Concr Res, 1998, 28(3): 365379.

[4]  MORINAGA S. Prediction of service life of reinforced concrete buildings based on rate of corrosion of reinforcing steel [R]. Special Report of Institute of Technology, Shimizu Corporation, Tokyo, 1988.

[5]  MORINAGA S. Prediction of service life of reinforced concrete buildings based on the corrosion rate of reinforcing steel [C]//Proceedings of the 5th International conference on durability of building materials and components, Brighton, U.K., 1990: 5–17.

[6]  AHMAD S, BHATTACHARJEE B. Empirical modeling of indicators of chloride induced rebar corrosion [J]. J Struct Eng, 2000, 27(3): 195–207.

[7]  ALONSO C, ANDRADE C, NOVOA X R, et al. Effect of protective oxide scales in the macrogalvanic behaviour of concrete reinforcements [J]. Corros Sci, 1998, 40(8): 13791389.

[8]  ANDRADE C, KEDDAM M, NOVOA X R, et al. Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry [J]. Electrochim Acta, 2001, 46(2425): 3905–3912.

[9]  MARTIN-PEREZ B. Service life modeling of R.C. highway structures exposed to chlorides [D]. Toronto: University of Toronto, 1999.

[10]  VU K, STEWART M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models [J]. Struct Saf, 2000, 22(4): 313–333.

[11]  耿欧, 袁迎曙, 蒋建华, . 混凝土中钢筋锈蚀速率的时变模型[J]. 东南大学学报(自然科学版), 2010, 40(6): 1293–1297.

GENG Ou, YUAN Yingshu, JIANG Jianhua, et al. J Southeast Univ: Nat Sci Ed (in Chinese), 2010, 40(6): 1293–1297.

[12]  TAKEWAKA K, YAMAGUCHI T, MAEDA S. Simulation model for deterioration of concrete structures due to chloride attack [J]. J Adv Concr Technol, 2003, 1(2): 139–146.

[13]  HUET B, L’HOSTIS V, SANTARINI G, et al. Steel corrosion in concrete: Determinist modeling of cathodic reaction as a function of water saturation degree [J]. Corros Sci, 2007, 49(4): 1918–1932.

[14]  ALONSO C, ANDRADE C, GONZALEZ J A. Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types [J]. Cem Concr Res, 1988, 18(5): 687–698.

[15]  GULIKERS J. Theoretical consideration on the supposed linear relationship between concrete resistivity and corrosion rate of steel reinforcement [J]. Mater Corros, 2005, 56(6): 393–403.

[16]  DURACRETE, Probabilistic Performance based Durability Design of Concrete Structures [R]. EU-Project (Brite EuRam III) No. BE95-1347/R 4–5, The Netherlands, 1998: 26–27.

[17]  MARTINEZ I, ANDRADE C. Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures [J]. Cem Concr Compos, 2009, 31(8): 545–554.

[18]  宋晓冰. 钢筋混凝土结构中的钢筋腐蚀[D]. 北京: 清华大学, 1999.

SONG Xiaobing. Corrosion of reinforcement in reinforced concrete structures (in Chinese, dissertation). Beijing: TsinghuaUniversity, 2006.

[19]  SCOTT A, ALEXANDER M G. The influence of binder type, cracking and cover on corrosion rates of steel in chloride-contaminated concrete [J]. Mag Concr Res, 2007, 59(7): 495–505.

[20]  GHODS P, ISGOR O B, POUR-GHAZ M. A practical method for calculating the corrosion rate of uniformly depassivated reinforcing bars in concrete [J]. Mater Corros, 2007, 58(4): 265–272.

[21]  GHODS P, ISGOR O B, POUR-GHAZ M. Experimental verification and application of a practical corrosion model for uniformly depassivated steel in concrete [J]. Mater Struct, 2008, 41(7): 1211–1223.

[22]  ARYA C, WOOD L A. The relevance of cracking in concrete to reinforcement corrosion [R]. Technical Report No. 44, Slough: the Concrete Society, 1995.

[23]  SAHMARAN M YAMAN I O. Influence of transverse crack width on reinforcement corrosion in mortar beams [J]. Can J Civil Eng, 2008, 35(3): 236–245.

[24]  施锦杰, 孙伟. 弯曲荷载与氯盐耦合作用下混凝土中钢筋锈蚀程度评估[J]. 硅酸盐学报, 2010, 38(7): 1201–1208.

SHI Jinjie, SUN Wei. J Chin Ceram Soc, 2010, 38(7): 1201–1208.

[25]  JAFFER S J. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes [D]. Waterloo: University of Waterloo, 2007.

[26]  SCOTT A N. The influence of binder type and cracking on reinforcing steel corrosion in concrete [D]. Cape Town: University of Cape Town, 2004.

[27]  MARUYA T, TAKEDA H, HORIGUCHI K, et al. Simulation of steel corrosion in concrete based on the model of macro-cell corrosion circuit [J]. J Adv Concr Technol, 2007, 5(3): 343–362.

[28]  MIYAZATO S, HASEGAWA Y. Proposal of corrosion rate analytical model of reinforced concrete with crack [C]//ANDRADE C, MANCINI G ed. Proceedings of the Joint fib-RILEM Workshop Modelling of Corroding Concrete Structures, Madrid, Spain, 2010: 39–64.

[29]  LI S C, WANG M B. Model for cover cracking due to corrosion expansion and uniform stresses at infinity [J]. Appl Math Model, 2008, 32(7): 1436–1444.

[30]  POUR-GHAZ M. A novel approach for practical modelling of steel corrosion in concrete [D]. Ottawa: CarletonUniversity, 2007.

[31]  GULIKERS J. Numerical modeling of reinforcement corrosion in concrete [C]//BOHNI H. ed. Corrosion in Reinforced Concrete Structures. Cambridge: Woodhead publishing limited, 2005: 83.

[32]  ISGOR O B, RAZAQPUR A G. Modelling steel corrosion in concrete structures [J]. Mater Struct, 2006, 39(3): 291–302.

[33]  KRANC S C, SAGUES A A. Computation of reinforcing steel corrosion distribution in concrete marine bridge substructures [J]. Corrosion, 1994, 50(1): 50–61.

[34]  DAO L T N, DAO V T N, KIM S H, et al. Modeling steel corrosion in concrete structures-part 1: A new inverse relation between current density and potential for the cathodic reaction [J]. Int J Electrochem Sci, 2010, 5(3): 302–313.

[35]  BALABANIC G, BICANIC N, DUREKOVIC A. The influence of w/c ratio, concrete cover thickness and degree of water saturation on the corrosion rate of reinforcing steel in concrete [J]. Cem Concr Res, 1996, 26(5): 761–769.

[36]  GE J. On the numerical solution of Laplace's equation with nonlinear boundary conditions for corrosion of steel in concrete [D]. Ottawa: CarletonUniversity, 2006.

[37]  BAZANT Z. Physical model for steel corrosion in concrete sea structures-theory [J]. J Struct Div, 1979, 105(ST6): 1137–1153.

[38]  BAZANT Z. Physical model for steel corrosion in concrete sea structures-application [J]. J Struct Div, 1979, 105(ST6): 1155–1166.

[39]  KRANC S C, SAGUES A A. Computation of corrosion macrocell current distribution and electrochemical impedance of reinforcing steel in concrete [C]//MUNN R S ed. Computer Modelling in Corrosion (ASTM STP 1154). Philadelphia, American Society for Testing and Materials, 1992: 95–112.

[40]  KRANC S C, SAGUES A A. Calculation of extended counter electrode polarization: effects on the electrochemical impedance response of steel in concrete [C]//SCULLY J R, SILVERMAN D C, KENDIG M W ed. Electrochemical Impedance: Analysis and Interpretation (ASTM STP 1188). American Society for Testing and Materials, Philadelphia, 1993: 365–383.

[41]  KRANC S C, SAGUES A A. Detailed modeling of corrosion macrocells on steel reinforcing in concrete [J]. Corros Sci, 2001, 43(7): 1355–1372.

[42]  HASSANEIN A M, GLASS G K, BUENFELD N R. Protection current distribution in reinforced concrete cathodic protection systems [J]. Cem Concr Compos, 2002, 24(1): 159–167.

[43]  GE J, ISGOR O B. Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete [J]. Mater Corros, 2007, 58(8): 573–582.

[44]  CHANG Z T, CHERRY B, MAROSSZEKY M. Polarisation behaviour of steel bar samples in concrete in seawater. Part 2: A polarisation model for corrosion evaluation of steel in concrete [J]. Corros Sci, 2008, 50(11): 3078–3086.

[45]  SONG H W, Kim H J, Kwon S J, et al. Prediction of service life in cracked reinforced concrete structures subjected to chloride attack and carbonation [C]//Proceedings of the International Conference on Cement Combinations for Durable Concrete, Dundee, U.K., 2005: 767–776.

[46]  BIRBILIS N, CHERRY B W. Monitoring the corrosion and remediation of reinforced concrete on-site: An alternative approach [J]. Mater Corros, 2005, 56(4): 237–243.

[47]  YUAN Y S, JIANG J H, PENG T. Corrosion process of steel bar in concrete in full lifetime [J]. ACI Mater J, 2010, 107(6): 562–567.

[48]  VAL D V, CHERNIN L. Cover cracking in reinforced concrete elements due to corrosion [J]. Struct Infrastruct Eng, 2012, 8(6): 569581. (DOI:10.1080/15732479.2010.505376).

[49]  STEWART M G, SUO Q H. Extent of spatially variable corrosion damage as an indicator of strength and time-dependent reliability of RC beams [J]. Eng Struct, 2009, 31(1): 198–207.

[50]  GONZALEZ J A, ANDRADE C, ALONSO C, et al. Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement [J]. Cem Concr Res, 1995, 25(2): 257–264.

[51]  KIM C Y, KIM J K. Numerical analysis of localized steel corrosion in concrete [J]. Constr Build Mater, 2008, 22(6): 1129–1136.

[52]  DARMAWAN M S. Pitting corrosion model for reinforced concrete structures in a chloride environment [J]. Mag Concr Res, 2010, 62(2): 91–101.

[53]  GULIKERS J. Improved engineering model for the propagation stage of chloride-induced pitting corrosion of steel reinforcement [C]//Third RILEM workshop on Testing and Modelling the Chloride Ingress into Concrete, Madrid, Spain, 2002: 257–268.

[54]  WILLIAMSON G S, WEYERS R E, BROWN M C, et al. Validation of probability-based chloride-induced corrosion service-life model [J]. ACI Mater J, 2008, 105(4): 375–380.

[55]  DEBY F, CARCASSES M, SELLIER A. Probabilistic approach for durability design of reinforced concrete in marine environment [J]. Cem Concr Res, 2009, 39(5): 466–471.

[56]  HAUSMANN D A. A probability model of steel corrosion in concrete [J]. Mater Performance, 1998, 37(10): 64–68.

[57]  YUAN Y S, JI Y S, SHAH S P. Comparison of two accelerated corrosion techniques for concrete structures [J]. ACI Struct J, 2007, 104(3): 344–347.

[58]  POURSAEE A, HANSSON C M. Potential pitfalls in assessing chloride-induced corrosion of steel in concrete [J]. Cem Concr Res, 2009, 39(5): 391–400.

[59]  施锦杰,孙伟. 电迁移加速氯盐传输作用下混凝土中钢筋锈蚀[J]. 东南大学学报(自然科学版), 2011, 2011, 41(5): 10421047.

SHI Jinjie, SUN Wei. J Southeast Univ: Nat Sci Ed (in Chinese), 2011, 41(5): 1042–1047.

[60]  施锦杰, 孙伟. 用电化学阻抗谱与X射线CT研究混凝土中钢筋的腐蚀行为[J]. 硅酸盐学报, 2011, 39(10): 127–133.

SHI Jinjie, SUN Wei. J Chin Ceram Soc, 2011, 39(10): 127–133.

[61]  ANGST U, RONNQUIST A, ELSENER B, et al. Probabilistic considerations on the effect of specimen size on the critical chloride content in reinforced concrete [J]. Corros Sci, 2011, 53(1): 177–187.

[62]  LI L, SAGUES A A. Chloride corrosion threshold of reinforcing steel in alkaline solutions-effect of specimen size [J]. Corrosion, 2004, 60(2): 195–202.

[63]  NANAYAKKARA O, KATO Y. Macro-cell corrosion in reinforcement of concrete under non-homogeneous chloride environment [J]. J Adv Concr Technol, 2009, 7(1): 31–40.

[64]  SUBRAMANIAM K V, BI M D. Investigation of steel corrosion in cracked concrete: evaluation of macrocell and microcell rates using tafel polarization response [J]. Corros Sci, 2010, 52(8): 2725–2735.

[65]  HANSSON C M, POURSAEE A, LAURENT A. Macrocell and microcell corrosion of steel in ordinary Portland cement and high performance concretes [J]. Cem Concr Res, 2006, 36(11): 2098–2102.

[66]  WARKUS J, RAUPACH M. Modelling of reinforcement corrosion-geometrical effects on macrocell corrosion [J]. Mater Corros, 2010, 61(6): 494–504.

[67]  ANDRADE C, GARCES P, MARTINEZ I. Galvanic currents and corrosion rates of reinforcements measured in cells simulating different pitting areas caused by chloride attack in sodium hydroxide [J]. Corros Sci, 2008, 50(10): 2959–2964.

 

 

online click open
My wife cheated on me read reasons married men cheat
why married men cheat on their wives reasons wives cheat on husbands women cheat on men
doxycycline doxycycline doxycycline
bystolic copay card click bystolic coupon voucher
cialis discount coupons go cialis 2015 coupon
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com