首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
量子点敏化TiO2纳米管的研究进展
作者:张小娇 李丹红 张蕊蕊 曹献坤 李建保 林仕伟 
单位:海南大学材料与化工学院 海南优势资源化工材料应用技术教育部重点实验室 海口 570228 
关键词:量子点 二氧化钛纳米管 制备方法 光电及催化性能 
分类号:TB321;TB33;TB34
出版年,卷(期):页码:2012,40(10):1394-1402
DOI:
摘要:

  总结近年来量子点敏化TiO2纳米管的制备方法介绍了量子点敏化TiO2纳米管的原理量子点的选择、TiO2纳米管的表面状态、量子点与TiO2纳米管的结合方式对光电及催化性能的影响。在此基础上,提出提高光电及催化性能的方法并指出值得关注的研究方向。

how to catch a cheater redirect go
My wife cheated on me why wives cheat on husbands reasons married men cheat
why do wife cheat on husband why wifes cheat how to cheat wife
my wife cheated on me now what i dream my husband cheated on me husband cheat
open reasons why married men cheat My husband cheated on me
printable coupons for cialis outbackuav.com coupon for free cialis
abortion las vegas abortion clinics in the bronx abortion pictures

Abstract: Recent developments on the quantum dots sensitized TiO2 nanotubes were reviewed. The principle and some factors affecting the photoelectric and catalytic performance of quantum dots sensitized TiO2 nanotubes were discussed. In addition, some approaches to improve the photoelectric conversion efficiency were given, and the aspects for the future research and development were proposed.

redirect how to cheat why women cheat on men they love
why married men cheat on their wives click here women cheat on men
doxycycline doxycycline doxycycline
基金项目:
教育部新世纪优秀人才支持计划项目(NCET-09-0110);海南省自然科学基金项目(511110)
作者简介:
第一作者:张小娇(1987—),女,硕士研究生。 通信作者:林仕伟(1977—),男,博士,教授。
how to cheat signs of a cheater wife cheat story
married cheaters why some women cheat click
why women cheat on husbands wife affair link
My wife cheated on me women cheat because reasons married men cheat
my wife cheated on me now what i dream my husband cheated on me husband cheat
amoxicillin amoxicillin amoxicillin
abortion pill abortion pill abortion pill
参考文献:

参考文献:
[1]  WANG Jun, LIN Zhiqun. Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineerin [J]. Chem Mater, 2010, 22(2): 579–584.
[2]  NG Jiawei, ZHANG Xiwang, ZHANG Tong, et al. Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water [J]. J Chem Technol Biotechnol, 2010, 85(8): 1061–1066.
[3]  ERDEM S, ZELIHA C, NECMETTIN K, et al. Synthesis of highly- ordered TiO2 nanotubes for a hydrogen sensor [J]. Int J Hydrogen Energy, 2010, 35(9): 4420–4427.
[4]  BAVYKIN D V, FRIEDRICH J M, WALSH F C. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications [J]. Adv Mater, 2006, 18(21): 2807–2824.
[5]  GHICOV A, SCHMIDT B, KUNZE J, et al. Photoresponse in the visible range from Cr doped TiO2 nanotubes [J]. Chem Phys Lett, 2007, 433(4): 323–326.
[6]  LIU Haijin, LIU Guoguang, ZHOU Qingxiang. Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity [J]. J Solid State Chem, 2009, 182(12): 3238–3242.
[7]  HAN Xiao, ZHU Yihua, YANG Xiaoling, et al. Electro- catalytic activity of Pt doped TiO2 nanotubes catalysts for glucose determination [J]. J Alloy Compd, 2010, 500: 247–251.
[8]  SRINIVASAN M, WHITE T. Degradation of methylene blue by three-dimensionally ordered macroporous titania [J]. Environ Sci Technol, 2007, 41(12): 4405–4409.
[9]  LAI Yuekun, HUANG Jianying, ZHANG Huifang, et al. Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources [J]. J Hazard Mater, 2010, 184(1–3): 855–863.
[10]  ZHANG Yanyan, FU Wuyou, YANG Haibin, et al. Synthesis and characterization of P-doped TiO2 nanotubes [J]. Thin Solid Films, 2009, 518: 99–103.
[11]  ROY P, ALBU S P, SCHMUKI P, et al.TiO2 nanotubes in dye-sensitized solar cells: higher efficiencies by well-defined tube tops [J]. Electrochem Commun, 2010, 12(7): 949–951.
[12]  LIANG Haichao, LI Xiangzhong. Visible-induced photocat- alytic reactivity of polymersensitized titania nanotube films [J]. Appl Catal B, 2009, 86(1): 8–17.
[13]  SHRESTHA N K, YANG M, NAH Y C, et al. Self-organized TiO2 nanotubes: visible light activation by Ni oxide nanoparticle decoration [J]. Electrochem Commun, 2010, 12(2): 254–257.
[14]  ZHANG Yunhuai, YANG Yannan, XIAO Peng, et al. Preparation of Ni nanoparticle TiO2 nanotube composite by pulse electrodeposition [J]. Mater Lett, 2009, 63(28): 2429– 2431.
[15]  ZABAN A, MICIC O I, NOZIK A J, et al. Photosensitiza- tion of Nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir, 1998, 14(12): 3153–3156.
[16]  ADACHI M, MURATA Y, OKADA I, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells [J]. J Electrochem Soc, 2003, 150: 488–493.
[17]  NOZIK A J. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion [J]. Inorg Chem, 2005, 44(20): 6893–6899.
[18]  SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J Appl Phys, 1961, 32(3): 510–520.
[19]  NOZIK A J. Quantum dot solar cells [J]. Physica E, 2002, 14: 115–120.
[20]  宋鑫. 量子点敏化太阳能电池: 制备及光电转换性能的改进[D]. 天津: 天津大学, 2010.
SONG Xing. Quantum dot sensitized solar cell: preparation and improvement of the power conversion efficiency (in Chinese, dissertation). Tianjin: Tianjin University, 2010.
[21]  ABD-LEFDIL S, MESSADULI C, SAYAH D, et al. Temperature growth and annealing effects on CdS thin films prepared by chemical bath deposition process [J]. Phys Stat Sol A, 1998, 168(2): 417–423.
[22]  LIN S C, LEE Y L, YANG Y M, et al. Quantum-dot- sensitized solar cells: Assembly of CdS–quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition [J]. Appl Phys Lett, 2007, 90(14): 143517–143520.
[23]  XIE Y, ALI G, YOO S H, et al. Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 Nanotube arrays with enhanced photoelectrochemical and photocatalytic activity [J]. ACS Appl Mater Int, 2010(10): 2910–2914.
[24]  BAKER D R, KAMAT P V. Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures [J]. Adv Funct Mater, 2009, 79(5): 805–811.
[25]  YIN Yuxin, JIN Zhengguo, HOU Feng. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays [J]. Nanotechnology, 2007, 18(49): 495608.
[26]  YANG Lixia, CHEN Beibei, LUO Shenglian, et al. Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO2 nanotube array through fluorescence resonance energy transfer [J]. Environ Sci Technol, 2010, 44(20): 7884–7889.
[27]  BANERJEE S, MOHAPATRA S K, DAS P P, et al. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS [J]. Chem Mater, 2008, 20(21): 6784–6791.
[28]  SHEN Y J, LEE Y L. Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot sensitized solar cell applications [J]. Nanotechnolopy, 2008, 19(4): 45602–45608.
[29]  ROBEL L, SUBRAMANIAN V, KUNO M. et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. J Am Chem Soc, 2006, 128(7): 2385–2393.
[30]  KIM J C, CHOI J, LEE Y B. et al. Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nano-particles [J]. Chem Commun, 2006(48): 5024–5026.
[31]  ZHANG Yaojun, YAN Wei, WU Yanpei, et al. Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition [J]. Mater Lett, 2008, 62(23): 3846–3848.
[32]  ZHU Juhong, YANG Dong, GENG Jianqing, et al. Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity [J]. J Nanopart Res, 2008, 10(5): 729–736.
[33]  LI Hong, ZHU Baolin, FENG Yunfeng, et al. Preparation of TiO2/ZnS core/sheath heterostructure nanotubes via a wet chemical method and their photocatalytic activity [J]. React Kinet Catal Lett, 2007, 92(2): 239–246.
[34]  HOU Yang, LI Xinyong, ZOU Xuejun, et al. Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-Chlorophenol degradeation [J]. Environ Sci Technol, 2009, 43(3): 858–863.
[35]  LI Danhong, LIN Shiwei, LI Shipu, et al. Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO2 nanotube arrays [J]. J Mater Res, 2012, 38(27): 1029–1036.
[36]  廖建军, 李士普, 曹献坤, 等. 有序TiO2纳米管阵列光催化性能研究进展[J]. 化工进展, 2011(09): 2003–2012.
LIAO Jianjun, LI ShiPu, CAO Xiankun. Review on photocatalytic activity of highly ordered TiO2 nanotube arrays [J]. Chem Eng Progr (in Chinese), 2011(09): 2003–2012.
[37]  OHNO T, TOKIEDA K, HIGASHIDA S, et al. Synergism between ruble and anatase TiO2 particles in photocatalytic oxidation of naphthalene [J]. Appl Catal A, 2003, 244(2): 383–391.
[38]  温艳媛. 纳米二氧化钛复合光催化剂的制备、表征及其可见光催化性质研究[D]. 华东师范大学, 2011.
WEN Yanyuan. Preparation, characterization and visible light-activated photocatalytic properties of a series of titanium dioxide-based composited photocatalysts (in Chinese, dissertation). East China Normal University, 2011.
[39]  TACHIBANA Y, HAQUE S A, DURRANT J R, et al. Modulation of the rate of electron injection in dye-sensitized nanocrystalline TiO2 films by externally applied bias [J]. J Phys Chem B, 2001, 105(31): 7424–7431.
[40]  NIITSOO O, SARKAR S K, PEJOUX C, et al. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells [J]. J Photochem Photobiol A: Chem, 2006, 181(2): 306–313.
[41]  吴辉煌. 电化学[M]. 北京: 化学工业出版社, 2004.
[42]  JEON T H, CHOI W Y, PARK H W. Photoelectrochemical and photocatalytic behaviors of hematite-decorated titania nanotube arrays: energy level mismatch versus surface specific reactivity [J]. J Phys Chem C, 2011, 115(14): 7134–7142.
[43]  GAO Xianfeng, LI Hongbo, SUN Wentao, et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes [J]. J Phys Chem C, 2009, 113(18): 7531–7535.
[44]  RATANATNWANATE C, XIONG Chunrong, BALKUS K J, et al. Fabrication of PbS quanum dot doped TiO2 nanotubes [J]. Nano Lett, 2008, 2(8): 682–1688.
[45]  WANG Ning, LI Xinyong, WANG Yuxin, et al. Synthesis of ZnO/TiO2 nanotube composite film by a two-step route [J]. Mater Lett, 2008, 62(21): 3691–3693.
[46]  SMITH Y R, SUBRAMANIAN V R. Heterostructural composites of TiO2 mesh TiO2 nanoparticles photosensitized with CdS: a new flexible photoanode for solar cells [J]. J Phys Chem C, 2011, 115(16): 8376–8385.
[47]  BRAGA A, GIMENEZ G, CONCINA I, et al. Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes [J]. J Phys Chem Lett, 2011, 2(5): 454–460.
[48]  HUANG Shuqing, ZHANG Quanxin, HUANG Xiaoming, et al. Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays [J]. Nanotechnology, 2010, 21(37): 375201.
[49]  YU Jiaguo, DAI Gaopeng, HUANG Baibiao, et al. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays [J]. J Phys Chem C, 2009, 113(37): 16394–16401.
[50]  CHENG Shuli, FU Wuyou, YANG Haibin, et al. Photoele-ctrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes [J]. J Phys Chem C, 2012, 116(3): 2615–2621.
[51]  SATO K, KOJIMA S, HATTORI S, et al. Controlling surface reactions of CdS nanocrystals: Photoluminescence activation, photoetching and photostability under light irradiation [J]. Nanotechnology, 2007, 18: 465702.
[52]  DIGUNA L J, SHEN Q, KOBAYASHI J, et al. High efficiency of CdSe quantum-dot-sensitized TiO2 Inverse opal solar cells [J]. Appl Phys Lett, 2007, 91(2): 023116.
[53]  CHEN Chong, XIE Yi, ALI G F, et al. Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer [J]. Nanoscale Res Lett, 2011, 6(1): 462.
[54]  SUN Wentao, YU Yuan, PAN Huayong, et al. CdS Quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. J Am Chem Soc, 2008, 130(4): 1124–1125.
[55]  KONGKANAND A, TVRDY K, TAKECHI K, et al. Quantum dot solar cells: tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. J Am Chem Soc, 2008, 130(12): 4007– 4015.
[56]  KESSELMAN J M, WERES O, LEWIS N S, et al. Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways [J]. J Phys Chem B, 1997, 101(14): 2637– 2643.
[57]  AUGUGLIAROV, PALMISANO L, SCALFANI A, et al. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photo- degradation [J]. J Phys Chem, 1988, 92(23): 6710–6713.
[58]  OKAMOTO K, YAMAMOTO Y, TANAKA H, et al. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder [J]. Bull Chem Soc Jpn, 1985, 58: 2015–2022.
[59]  NOSAKA A Y, NISHINO J, FUJIWARA T, et al. Effects of thermal treatments on the recovery of adsorbed water and photocatalytic activities of TiO2 photocatalytic systems [J]. J Phys Chem B, 2006, 110(16): 8380–8385
[60]  阴育新. TiO2纳米管阵列的阳极氧化制备与光电催化性能[D]. 天津: 天津大学, 2007.
YIN Yuxin. Fabrication and water photoelectrolysis properties of TiO2 nanotube arrays by anodization (in Chinese, dissertation). Tianjin: Tianjin University, 2007.
[61]  PERNIK D R, TVRDY K, RADICH J G, et al. Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: linked versus direct attachment [J]. J Phys Chem C, 2011, 115(27): 13511–13519.
[62]  ARDALAN P, BRENMAN T P, LEE H B R, et al. Effects of self-assembled monolayerson solid-state CdS quantum dot sensitized solar cells [J]. ACS Nano, 2011, 5(2): 1495–1504.
[63]  DIBBELL R S, WATSON D F. Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles [J]. J Phys Chem C, 2009, 113: 3139–3149.
[64]  ZHU Guang, PAN Likun, XU Tao, et al. One-step synthesis of CdS sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by microwave assisted chemical bath deposition method [J]. ACS Appl Mater Interfaces, 2011, 3(5): 1472–1478.
[65]  BUHBUT S, ITAHAKOV S, TAUBER E, et al. Built-in quantum dot antennas in dye-sensitized solar cells [J]. ACS Nano, 2010, 4 (3):1293–1298.
[66]  LIU Liping, WANG Gongming, LI Yat, et al. CdSe quantum dot- sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance [J]. Nano Res, 2011, 4(3): 249–258.

women want men infidelity signs how do i know if my wife cheated
redirect why do women cheat on their husbands unfaithful husband
sumatriptan side effects sumatriptan side effects sumatriptan side effects
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com