首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
用纳米压痕复合扫描电子显微镜分析水泥砂浆中单一组相的力学性能
作者:高岳毅1 2 3 张亚梅1 2 胡传林4 李宗津4 
单位:1. 东南大学材料科学与工程学院 南京 211189 2. 东南大学江苏省土木工程材料重点实验室 南京 211189 3. 江苏省安全生产科学研究院 南京 210042 4. 香港科技大学土木及结构工程系 香港 
关键词:纳米力学性能 弹性模量 单一物相 纳米压痕 背散射电子图象 
分类号:TU502.4
出版年,卷(期):页码:2012,40(11):1559-1563
DOI:
摘要:

摘  要:采用纳米压痕复合扫描电子显微镜研究了硬化水泥砂浆的物相和对应的微观力学性能。结果发现:微观尺度上,砂子、未水化水泥颗粒和氢氧化钙的弹性模量分别为105.55、107.06 GPa和60.88 GPa。同时,低密度水化产物和高密度水化产物的存在得到了验证,其弹性模量的统计分析值分别为18.42 GPa和32.53 GPa。从测试结果的对比分析可以看出,未水化水泥颗粒弹性模量的测试值与文献值基本保持一致,氢氧化钙弹性模量的测试值高于文献值;水化产物弹性模量统计分析的结果虽与文献保持一致,但超高密度水化产物的存在仍有不确定性。

how to cheat women who want to cheat wife cheat story
read cheat on husband signs of infidelity
doxycycline doxycycline doxycycline
cialis coupon cialis coupon cialis coupon

Abstract: A commonly used hardened cement mortar was analyzed via the grid-nanoindentation coupled with scanning electron microscope image analysis. In the microscopic scale, the elastic modulus of sand, unhydrated cement particles and portlandite are 105.55, 107.06 GP and 60.88 GPa, respectively. The co-existence of low density hydration products and high density hydration products was found, and their calculated elastic moduli were 18.42 GPa and 32.53 GPa, respectively. The results show that the testing value of unhydrated cement particle is similar to the published value, while the testing value of portlandite is much higher than the published value. The results also reveal that the statistical values of hydration products are in accord with the published values, however, the existence of ultra-high density hydration products is still an assumption.

how do i know if my wife has cheated infidelity in marriage read
redirect why do women cheat on their husbands unfaithful husband
read cheat on husband signs of infidelity
cialis coupon cialis coupon cialis coupon
基金项目:
国家自然科学基金(51178105)、国家重点基础研究发展计划(2009CB623200)资助。
作者简介:
第一作者:高岳毅(1981—),男,博士研究生。 通信作者:张亚梅(1968—),女,教授。
printable coupons for cialis outbackuav.com coupon for free cialis
参考文献:

References:
[1]  ULM F J, CONSTANTINIDES G, HEUKAMP F H. Is concrete a poromechanics material?—A multiscale investigation of poroelastic properties [J]. Mater Struct, 2004, 37(265): 43–58.
[2]  STORA E, HE Q C, BARY B. Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes [J]. Cem Concr Res, 2006, 36(7): 1330–1344.
[3]  SORELLI L, CONSTANTINIDES G, ULM F J, et al. The nano-me- chanical signature of ultra high performance concrete by statistical nanoindentation techniques [J]. Cem Concr Res, 2008, 38(12): 1447– 1456.
[4]  SORRENTINO F, VELEZ K, MAXIMILIEN S, et al. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker [J]. Cem Concr Res, 2001, 31(4): 555–561.
[5]  ACKER P. Swelling, shrinkage and creep: a mechanical approach to cement hydration [J]. Mater Struct, 2004, 37(268): 237–243.
[6]  CONSTANTINIDES G, ULM F, van VLIET K. On the use of nanoindentation for cementitious materials [J]. Mater Struct, 2003, 36(257): 191–196.
[7]  LURA P, TRTIK P, MUNCH B. A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments [J]. Cem Concr Comp, 2009, 31(10): 705–714.
[8]  ULM F J, VANDAMME M, JENNINGS H M, et al. Does microstructure matter for statistical nanoindentation techniques? [J]. Cem Concr Comp, 2010, 32(1): 92–99.
[9]  LURA P, TRTIK P, MUNCH B. Validity of recent approaches for statistical nanoindentation of cement pastes [J]. Cem Concr Comp, 2011, 33(4): 457–465.
[10]  ULM F J, CONSTANTINIDES G. The effect of two types of C–S–H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling [J]. Cem Concr Res, 2004, 34(1): 67–80.
[11]  ULM F J, CONSTANTINIDES G. The nanogranular nature of C–S–H [J]. J Mech Phys Solids, 2007, 55(1): 64–90.
[12]  ULM F J, DEJONG M J. The nanogranular behavior of C–S–H at elevated temperatures [J]. Cem Concr Res, 2007, 37(1): 1–12.
[13]  MONDAL P, SHAH S P, MARKS L. A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials [J]. Cem Concr Res, 2007, 37(10): 1440–1444.
[14]  MONDAL P, SHAH S P, MARKS L D. Nanomechanical properties of interfacial transition zone in concrete [C]// 3rd International Symposium on Nanotechnology in Construction, Prague Czech Republic, 2009: 315–320.
[15]  SIDNEY D. The microstructure of cement paste and concrete––a visual primer [J]. Cem Concr Comp, 2004, 26(8): 919–933.
[16]  SCRIVENER K L, CRUMBIE A K, LAUGESEN P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete [J]. Interf Sci, 2004, 12(4): 411–421.
[17]  ZHU W, FONTEYN M T J, HUGHES J, et al. Nanoindentation study of resin impregnated sandstone and early-age cement paste specimens [C]// 3rd International Symposium on Nanotechnology in Construction, Prague Czech Republic, 2009: 403– 408.
[18]  OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments [J]. J Mater Res, 1992, 7(6): 1564–1583.
[19]  OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J Mater Res, 2004, 19(1): 3–20.
[20]  FISHER-CRIPPS A C. Nanoindetation [M]. 3rd ed. London: Springer, 2011: 21–92.
[21]  ULM F J, VANDAMME M, BOBKO C, et al. Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale [J]. J Am Ceram Soc, 2007, 90(9): 2677–2692.
[22]  DAVYDOV D, JIRASEK M, KOPECKY L. Critical aspects of nano-indentation technique in application to hardened cement paste [J]. Cem Concr Res, 2011, 41(1): 20–29.
[23]  DORN R I. Digital processing of back-scatter electron imagery: A microscopic approach to quantifying chemical weathering [J]. Geol Soc Am Bull, 1995, 107(1): 725–741.
[24]  CHEN J J, SORELLI L, VANDAMME M, et al. A Coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: Evidence for C–S–H/Ca(OH)(2) nanocomposites [J]. J Am Ceram Soc, 2010, 93(5): 1484–1493.
[25]  MONDAL P, SHAH S R, MARKS L D. Nanoscale characterization of cementitious materials [J]. Aci Mater J, 2008, 105(2): 174–179.
[26]  SKALNY J G J, ODLER I. Calcium Hydroxide in Concrete [M]. Westerville: The American Ceramic Socity, 2001: 77–89.
[27]  RICHARDSON I. The nature of CSH in hardened cements [J]. Cem Concr Res, 1999, 29(8): 1131–1147.
[28]  JENNINGS H M. A model for the microstructure of calcium silicate hydrate in cement paste [J]. Cem Concr Res, 2000, 30(1): 101–116.
[29]  JENNINGS H M, THOMAS J J, GEVRENOV J S, et al. A multi- technique investigation of the nanoporosity of cement paste [J]. Cem Concr Res, 2007, 37(3): 329–336.

abortion pill abortion pill abortion pill
bystolic copay card bystolic coupon voucher
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com