首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
ZnO的水热合成及其在TiO2/ZnO染料敏化太阳能电池中的应用
作者:雷芳1 陈昊鸿2 施鹰1 谢建军1 
单位:1. 上海大学材料科学与工程学院电子信息材料系 上海 200444 2. 中国科学院上海硅酸盐研究所人工晶体中心 上海 200050 
关键词:染料敏化太阳能电池 氧化锌 二氧化钛 水热合成 
分类号:TU502.4
出版年,卷(期):页码:2013,41(1):12-18
DOI:
摘要:

摘  要:通过在不同矿化剂粉末[六亚甲基四胺(hexamethylenetetramine,HMT)、尿素和氢氧化锂]存在下的水热反应制备得到具有不同形貌尺寸的ZnO粉体,通过X射线衍射、扫描电子显微镜、紫外可见漫反射光谱和表面光电压谱研究了不同矿化剂存在下所制备ZnO的尺寸、形貌和光电性能。结果表明:以HMT和LiOH作矿化剂可得到六方纤锌矿结构的ZnO粉体,且尺寸均一;尿素作矿化剂得到产物的结晶性较差;在LiOH存在下制备的ZnO具有明显的光电响应性能,这与带带跃迁及激子跃迁相关的。将所制备的ZnO用于染料敏化太阳能电池中,作为TiO2基染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)光阳极的上层膜,起光散射作用,下层是纳米TiO2晶膜。作为对比,制备了单一ZnO基DSSCs。通过光电流–电压(I–V)曲线研究了2种DSSCs的光电转换效率,结果表明:TiO2/ZnO双层膜光阳极组装的DSSCs的光电性能优于ZnO基DSSCs,说明具有光散射层的DSSCs的光吸收增强归因于下层TiO2纳米晶膜的高比表面积和上层大尺寸ZnO光散射膜的组合效应。

how to cheat women who want to cheat wife cheat story
how to catch a cheater link go
read read here link
printable coupons for cialis outbackuav.com coupon for free cialis

Abstract: ZnO crystals with different sizes and morphologies were synthesized with different mineralizers (i.e., hexamethylenetetramine (HMT, (CH2)6N4, 99%), urea (CO(NH2)2), and lithium hydroxide (LiOH)) by a hydrothermal method. Their size, morphology and opto-electronic properties were characterized by X-ray diffraction, scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy and surface photovoltage spectroscopy, respectively. The results indicate that the products obtained in the presence of HMT and LiOH are hexagonal wurtzite ZnO particles, and the crystallinity of the product obtained in the presence of CO(NH2)2 is incomplete. The ZnO nanocrystals obtained in the presence of LiOH exhibited a superior photoelectronic response, which could be related to the band-to-band transition and exciton transition. The ZnO crystals obtained were used in dye-sensitized solar cells (DSSCs), as the upper layer of photoanode in TiO2-based DSSCs, showing a light-scattering effect, and the under layer was TiO2 nanocrystal film. In addition, the monolayer ZnO-based DSSCs were also prepared for the comparison purpose. The photoelectronic conversion efficiency of DSSCs was analyzed via the photocurrent–voltage (I–V) curve measurement. It was indicated that the photovoltaic performance of DSSCs with TiO2/ZnO double-layer photoanode was better than that of the monolayer ZnO DSSCs, implying that the light absorption enhancement of DSSCs with a light-scattering layer was due to the incorporation of a greater specific surface area underlayer of the nanocrystalline TiO2 and a larger size of ZnO light scattering film.

read click link
基金项目:
中国博士后科学基金面上资助(20090460622);上海市博士后资助计划面上项目(10R21413900)。
作者简介:
第一作者:雷 芳(1979—),女,博士,讲师。
redirect unfaithful spouse why women cheat on men they love
doxycycline doxycycline doxycycline
参考文献:

References:
[1]  O′REGAN B, GRATZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 Films [J]. Nature, 1991, 353: 737–740.
[2]  NAZEERUDDIN M K, PE´CHY P, RENOUARD T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J Am Chem Soc, 2001, 123(8): 1613–1624.
[3]  CHIBA Y, ISLAM A, WATANABE Y, et al. Dye-sensitized solar cells with conversion efficiency of 11.1% [J]. Jpn J Appl Phys, Part 2-Letters & Express Letters, 2006, 45(24–28): L638–L640.
[4]  CAO Y, BAI Y, YU Q, et al. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine [J]. J Phys Chem C, 2009, 113(15): 6290–6297.
[5]  YELLA A, LEE H W, TSAO H N, et al. Porphyrin-sensitized solar cells with cobalt (ii/iii)–based redox electrolyte exceed 12 percent efficiency [J]. Science, 2011, 334(6056): 629–634.
[6]  GRATZEL M. Solar energy conversion by dye-sensitized photovoltaic cells [J]. Inorg Chem, 2005, 44(20): 6841–6851.
[7]  GAO F, WANG Y, SHI D, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells [J]. J Am Chem Soc, 2008, 130: 10720–10728.
[8]  LABAT F, CIOFINI I, HRATCHIAN H P, et al. First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances [J]. J Am Chem Soc, 2009, 131(40): 14290–14298.
[9]  LIU J Y, LUO T, T S M, et al. A novel coral-like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application [J]. Chem Commun, 2010, 46: 472–474.
[10]  GIBSON E A, SMEIGH A L, PLEUX L L, et al. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V [J]. Angew Chem Int Ed, 2009, 48: 4402–4405.
[11]  ZHANG H, SHEN L, GUO S W. Insight into the structures and properties of morphology-controlled legs of tetrapod-like ZnO nanostructures [J]. J Phys Chem C, 2007, 111: 12939–12943.
[12]  LI C, FANG G J, SU F H, et al. Self-organized ZnO microcombs with cuboid nanobranches by simple thermal evaporation [J]. Cryst Growth & Design, 2006, 6(11): 2588–2591.
[13] LIU L, FU L, LIU Y, et al. Bioinspired synthesis of vertically aligned ZnO nanorod arrays: Toward Greener chemistry [J]. Cryst Growth & Design, 2009, 9(11): 4793–4796.
[14]  BACSA R R, DEXPERT-GHYS J, VERELST M, et al. Synthesis and structure–property correlation in shape-controlled ZnO nanoparticles prepared by chemical vapor synthesis and their application in dye- sensitized solar cells [J]. Adv Funct Mater, 2009, 19: 875–886.
[15]  MA P, WU Y, FU Z, et al. Fabrication of hierarchical ZnO architectures by a biomineralization process [J]. Adv Powder Technol, 2012, 23(2): 170–174.
[16]  ZHANG Q F, CHOU T P, RUSSO B, et al. Polydisperse aggregates of ZnO nanocrystallites: A method for energy-conversion-efficiency enhancement in dye-sensitized solar cells [J]. Adv Funct Mater, 2008, 18(11): 1654–1660.
[17]  ZHANG Q F, DANDENEAU C S, ZHOU X Y, et al. ZnO nanostructures for dye-sensitized solar cells [J]. Adv Mater, 2009, 21(41): 4087–4108.
[18]  ZHANG Q F, CHOU T R, RUSSO B, et al. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells [J]. Angewandte Chemie-International Edition, 2008, 47(13): 2402–2406.
[19]  ZENG L Y, DAI S Y, XU W W, et al. Dye-sensitized solar cells based on ZnO films [J]. Plasma Sci Technol, 2006, 8(2): 172–175.
[20]  JENSEN R A, VAN RYSWYK H, SHE C, et al. Dye-sensitized solar cells: sensitizer-dependent injection into ZnO nanotube electrodes [J]. Langmuir, 2009, 26(3): 1401–1404.
[21]  CHOU T P, ZHANG Q F, FRYXELL G E, et al. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency [J]. Adv Mater, 2007, 19: 2588–2592.
[22]  FENG X J, SHANKAR K, VARGHESE O K, et al. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications [J]. Nano Lett, 2008, 8(11): 3781–3786.
[23]  QUINTANA M, EDVINSSON T, HAGFELDT A, et al. Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime [J]. J Phys Chem C, 2007, 111: 1035–1041.
[24]  HORE S, VETTER C, KERN R, et al. Influence of scattering layers on efficiency of dye-sensitized solar cells [J]. Sol Energy Mater Sol Cells, 2006, 90(9): 1176–1188.
[25]  HUANG F, CHEN D, ZHANG X L, et al. Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high- efficiency dye-sensitized solar cells [J]. Adv Funct Mater, 2010, 20(8): 1301–1305.
[26]  ZHENG Y Z, TAO X, WANG L X, et al. Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells [J]. Chem Mater, 2010, 22(3): 928–934.
[27]  WANG Z S, KAWAUCHI H, KASHIMA T, et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell [J]. Coord Chem Rev, 2004, 248: 1381–1389.
[28]  HORE S, NITZ P, VETTER C, et al. Scattering spherical voids in nanocrystalline TiO2 - enhancement of efficiency in dye-sensitized solar cells [J]. Chem Commun, 2005: 2011–2013.
[29]  LEE J K, JEONG B H, JANG S I, et al. Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells [J]. J Ind Eng Chem, 2009, 15(5): 724–729.
[30]  LIN Y H, WANG D J, ZHAO Q D, et al. A study of quantum confinement properties of photogenerated charges in zno nanoparticles by surface photovoltage spectroscopy [J]. J Phys Chem B, 2004, 108(10): 3202–3206.
[31]  LIN Y H, WANG D J, ZHAO Q D, et al. Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods [J]. Nanotechnology, 2006, 17: 2110–2115.
[32]  QIU Y, CHEN W, YANG S. Double-layered photoanodes from variable- size anatase tio2 nanospindles: a candidate for high-efficiency dye- sensitized solar cells [J]. Angew Chem Inter Edition 2010, 49(21): 3675–3679.
[33]  LAW M, GREENE L E, RADENOVIC A, et al. ZnO–Al2O3 and ZnO– TiO2 core-shell nanowire dye-sensitized solar cells [J]. J Phys Chem B, 2006, 110: 22652–22663.
[34]  LAW M, GREENE L E, JOHNSON J C, et al. Nanowire dye-sensitized solar cells [J]. Nat Mater, 2005, 4(6): 455–459.
[35]  PARK K, ZHANG Q F, GARCIA B B, et al. Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO Nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells [J]. Adv Mater, 2010, 22(21): 2329–2332.


DOI:10.7521/j.issn.0454–5648.2013.01.04

abortion pill abortion pill abortion pill
cialis discount coupons go cialis 2015 coupon
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com