首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
高超声速飞行器陶瓷复合材料与热结构技术研究进展
作者:鲁芹 胡龙飞 罗晓光 姜贵庆 
单位:中国航天空气动力技术研究院 北京 100074 
关键词:陶瓷隔热瓦 陶瓷防热材料 防热–隔热一体化 梯度化 抗氧化 
分类号:251-260
出版年,卷(期):页码:2013,41(2):0-0
DOI:
摘要:

摘  要:高超声速飞行器热防护材料与结构是关系高超声速飞行器安全的关键热防护技术。陶瓷复合材料具有耐高温和稳定性好等优点,成为高超声速飞行器高温区和大面积区域所用的最重要的热防护结构材料。回顾了陶瓷复合材料在高超声速飞行器热防护系统中的应用,从材料制备、抗氧化以及物理性能等方面综述了美国陶瓷隔热材料和陶瓷防热材料技术研究进展与应用现状,详细介绍了陶瓷材料与结构的最新研究进展,特别是新型的防热–隔热一体化陶瓷瓦,总结了陶瓷瓦所采用的热防护技术的改进升级,指出了高超声速飞行器陶瓷材料与结构面临的挑战,最后展望了应用于高超声速飞行器中的陶瓷复合材料与结构的未来发展方向。

how to cheat signs of a cheater wife cheat story
why do wife cheat on husband why men cheat how to cheat wife
amoxicillin amoxicillin amoxicillin

Abstract: Thermal protection systems, which are correlated to the safety of hypersonic vehicles, are one of the most critical techniques in design and manufacture of hypersonic vehicles. Ceramic composites are ideal materials used in thermal protection systems due to their high chemical and structural stability at extremely high operating temperatures. This paper reviews some ceramic composites and their structures that are applied to hypersonic flight vehicles, and summarizes the development and application on the preparation, oxidation resistance, mechanical and physical characterization of the composite materials. An integrated thermal protection system was discussed in details. The challenges for development and application of ceramic composite materials in hypersonic vehicles were mentioned. In addition, further developments of ceramic composite materials were also highlighted for hypersonic flight vehicles.

married cheaters how many women cheat click
online women that cheat with married men married woman looking to cheat
how do i know if my wife has cheated men having affairs read
why married men cheat on their wives women cheat on men
cialis discount coupons coupons for cialis 2016 cialis 2015 coupon
基金项目:
作者简介:
第一作者:鲁 芹(1973—),女,博士,高级工程师。
how to catch a cheater online go
read percentage of women who cheat signs of infidelity
参考文献:

参考文献:
[1]  RODRIGU A C, SNAPP C G. Orbiter Thermal Protection System Lessons Learned [R]. AIAA, 2011–7308.
[2]  竺士伟. 航天飞机热结构反思[J]. 太空探索, 2011(1): 26–34.
ZHU Shiwei. Space Exploration (in Chinese), 2011(1): 26–34.
[3]  李俊宁, 胡子君, 孙陈诚, 等. 高超声速飞行器隔热材料技术研究进展[J]. 宇航工艺材料, 2011(6): 10–13.
LI Junning, HU Zijun, SUNChencheng, et al. Aerospace Mater Technol (in Chinese), 2011(6): 10–13.
[4]  PHILIP T, HARSHI, LOEWELL C Keel. X-43A vehicle design and manufacture [R]. AIAA, 2005–3334.
[5]  KEVIN RIVERS H, DAVID E. Glass, advances in hot-structure development [R]. AIAA, 20060020757.
[6]  郭朝邦, 李文杰. 高超声速飞行器结构材料与热防护系统[J]. 飞航导弹, 2010(4): 88–94.
GUO Chaobang, LI Wenjie. Aerodynamic Missile (in Chinese), 2010(4): 88–94.
[7]  DAVID E. Glass, ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles [R]. AIAA, 2008–2682.
[8]  DANIEL B. LEISER, DAVID A. Stewart, Shuttle materials resistant to micrometeorite orbital debris [R]. NASA20040171779: 60–6.
[9]  曾昭焕. 航天飞机用刚性陶瓷瓦防热材料发展概况[J]. 宇航工艺材料, 1989, 19(3): 12–20.
ZENG Zhaohuan. Aerospace Mater Technol (in Chinese), 1989, 19(3): 12–20.
[10]  郭正, 赵稼祥. 碳碳复合材料的研究与发展[J]. 宇航工艺材料, 1995(5): 1–7.
GUO Zhen, ZHAO Jiaxiang. Aerospace Mater Technol (in Chinese), 1995(5): 1–7.
[11]  RUDY E. Compendium of phase diagram data: ternary phase equilibr ia in transition metal-boron-carbon-silicon systems Part 5 - air force materials laboratory, wright - patterson air force base [R]. Ohio, 1969.
[12]  SYLVIA M, Johnson and MATTTHEW J. Gasch, DAN Leiser, DAVID Stewart, Jr. Development of new TPS at NASA Ames Research Center [R]. AIAA, 2008–2560.
[13]  DAVID A S, DANIEL B L. Lightweight TUFROC TPS for Hypersonic Vehicles [R]. Canberra, AIAA 20067945.
[14]  王康太, 冯坚, 姜勇刚, 等. 陶瓷纤维刚性隔热瓦研究进展[J]. 材料导报, 2011, 25(12): 35–39.
WANG Kangtai, FENG Jian, JIANG Yonggang, et al. Mater Rev (in Chinese), 2011, 25(12): 35–39.
[15]  CAPECE A M. Failure analysis of a thermal tile on the space shuttle Columbia [J]. J Fail Anal Prevent, 2007, 6(1): 55–60.
[16]  苏芳, 孟宪红. 三种典型热防护系统发展概况[J]. 飞航导弹, 2006(10): 57–60.
SU Fang, MENG Xianhong. Aerodynamic Missile (in Chinese), 2006(10): 57–60.
[17]  RONAILD P B. Rigid fibrous ceramics for entry systems [R]. NASA N93-22117: 431–437.
[18]  FROSH R A, LEISER D B, GOLDSTEIN H E, et al. Fibrous refractory composite insulation [P]. US Patent, 4 148 962. 1979–04–10.
[19]  MARSHELL B A. Space shuttle FRCI-12 TPS tile venting test in the NASA/AMES research center 11X11-foot and 9X7-foot wind tunnels [R]. 1982, NASA–CR–167.
[20]  刘萝威. NASA航天飞机轨道飞行器的先进材料与工艺[J]. 飞航导弹, 2003(12): 54–55.
LIU Luowei. Aerodyn Missle (in Chinese), 2003(12): 54–55.
[21]  EHRLICH C F. TPS/Insulation concepts for vehicles with reusable cryotanks [R]. 1994, AIAA–94–4675.
[22]  LEISER D B, SMITH M, STEWART D A. Options for improving rigidized ceramic heat shields [J]. Ceram Eng Sci Proc, 1985(6): 757–768.
[23]  LEISER D B, SMITH M, STEWARD D A. Effect of fiber size and composition on mechanical and thermal properties of low density ceramic composite insulation materials [R]. NASA CP, 1984, 2357: 231–244.
[24]  DICHIARAR A. Method of making apermeable ceramic tile insulation [P]. Patent US 6 613 255 B2. 2003–09–02.
[25]  STEWART D A, LEISER D B, SMITH M. Thermal response of integral multicomponent composite thermal protection systems [R]. AIAA–85–1056.
[26]  YU J, KWAN H W. Use of HTP ceramic foam for aeroacoustic applications [R]. AIAA–97–1705–CP: 887–897.
[27]  BANAS R P, CREEDON J F, CUNNINGTON J R. Thermophysical and mechanical properties of the HTP family of rigid ceramic insulation materials [R]. AIAA–85–1055, 1985.
[28]  HENG V, HINKLE K A, SANTOS M A. Rigid insulation and method of producing same [P]. US Patent 6, 716, 782 B2. 2004–04–06.
[29]  MAAHS H G, VAUGHN W I, KOWEL W. Four advances in carborr-carbon materials technology [R]. 1994, NASA N94–304811–15.
[30]  杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器防热材料与结构的研究进展[J]. 应用数学和力学, 2008, 29(1): 47–56.
YANG Yazheng, YANG Jialing, FANG Daining. Appl Math Mech, 2008, 29(1): 47–56.
[31]  裴雨辰, 李文静, 张凡, 等. 刚性陶瓷隔热瓦研究现状及启示[J]. 飞航导弹, 2012(3): 93–96.
PEI Yuchen, LI Wenjing, ZHANG Fan, et al. Aerodyn Missile (in Chinese), 2012(3): 93–96.
[32]  SYLVIA M J, MATT G, JOHN W L. Recent Developments in Ultra High Temperature Ceramics at NASA Ames [R]. AIAA 2009–7219.
[33]   DAVID A, Steward, SANTA Cruz, DANIEL B, Leiser, Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite [P]. US Patent 7, 381, 459 B1, 2008–06–03.
[34]  DANIEL B. Leiser, DAVID A. Stewart, ROBERT DiFiore, Flight performance of a functionally gradient Material TUFI on Shuttle Orbiter [R]. NASA–20020042186.
[35]  DANIEL B L, MASHNELL Smith, et al. Toughened uni-piece fibrous Insulation [P]. US Patent 5, 079082, 1992–01–07.
[36]  MILOS F S, SQUIRE T H. Thermal stress analysis of X-34 wing leading edge tile TPS [R]. 1996, AIAA–96–1821.
[37]  STEWART D A, DANIEL B L, ROBERT R D, et al. High efficiency tantalum-based ceramic composite structures [P]. US patent, 7.767, 303131, 2010–08–03.
[38]  郭景坤. 陶瓷的脆性与增韧[J]. 硅酸盐学报, 1987, 15(15): 385–393.
GUO Jingkun. J Chin Ceram Soc, 1987, 15(15): 385–393.

why women cheat on husbands wife affair link
read click link
bystolic copay card click bystolic coupon voucher
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com