首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
多铁性材料BiFeO3的磁学、电学性质及磁电耦合效应
作者:张金星 于浦 
单位:1. 北京师范大学物理学系 北京 100875 2. 清华大学物理系 低维量子物理国家重点实验室 北京 100083 
关键词:铁酸铋 多铁性 磁电耦合 铁电 反铁磁 
分类号:TQ174
出版年,卷(期):页码:2013,41(7):905-915
DOI:
摘要:

磁电多铁性材料中电荷和自旋序参量共存,并相互耦合在一起,产生磁电耦合效应。由于磁电耦合效应在未来高密度、低能耗、高读写速率器件的重要应用前景,近10年来,多铁性材料的研究成为了材料科学以及凝聚态物理领域的热点之一。BiFeO3不仅是为数不多的铁电反铁磁的多铁性材料之一,更难能可贵的是它的铁电Curie温度和反铁磁Néel温度都远高于室温。正因为如此,BiFeO3早在60多年前就受到人们的关注;但是直到2003年高质量外延薄膜的出现,才真正掀起了人们对其卓越性能和新奇物理现象研究的热潮。正是在这个背景下回顾BiFeO3的发展历史,着重介绍近10年此领域的研究成果:从晶体结构、电学性质(巨大铁电极化、电致阻变效应等)、磁学性质(自旋螺旋结构)以及磁电耦合特性等角度,对由BiFeO3多铁性模型体系中衍生出来的新奇物理现象进行详细介绍。最后,就近几年相关领域的研究进行总结和研究展望。
 

read percentage of women who cheat signs of infidelity
cialis discount coupons go cialis 2015 coupon

The coexistence and coupling of the electric and magnetic order parameters can provide a novel platform to probe magnetoelectric effects in multiferroics. The potential applications of magnetoelectric coupling on future high-density, high-speed and low-energy-cost electronic devices stimulate material scientists and condense matter physicists to revisit multiferroic systems over the past decades. Owing to the high ferroelectric and Néel transition temperatures, BiFeO3 (BFO) appears to be one of the most promising candidates in the on-chip integrated magnetoelectronic devices and attracts people’s interests since 1960s. Especially, the appearance of high-quality BFO epitaxial thin films in 2003 has triggered the study of its intrinsic properties and physics behind. This article reviews the BFO research history and focuses on the cutting-edge achievements in BFO-related projects in the past decade. We mainly introduce the emerging physical phenomena from the aspects of crystalline structures, electrical/magnetic behaviors and magnetoelectric coupling in this multiferroic BFO, accompanying with a brief outlook in the conclusion.
 

women want men signs of unfaithful husband how do i know if my wife cheated
redirect i dreamed my wife cheated on me unfaithful husband
redirect go why women cheat on men they love
open open My husband cheated on me
基金项目:
国家自然科学基金面上项目(11274045;11274194)。
作者简介:
第一作者:张金星(1981—),男,博士,研究员。 通信作者:于 浦(1980—),男,博士,助理教授。
how do i know if my wife has cheated men having affairs read
why do wife cheat on husband why men cheat how to cheat wife
参考文献:

[1]  BROWN W F, HORNREICH R M, SHTRIKMAN S. Upper bound on the magnetoelectric susceptibility [J]. Phys Rev, 1968, 168: 574–577.
[2]  CURIE P. Sur la symétrie dans les phénomenes physiques, symétrie d'un champ électrique et d'un champ magnétique [J]. J Physique, 1894, 3: 393–415.
[3]  SMOLENSKII G A, CHUPIS I E. Ferroelectromagnets [J]. Usp Fiz Nauk, 1982, 137: 415–448.
[4]  SMOLENSKII G A, ISUPOV V A, AGRANOVSKAYA A I, et al. New ferroelectrics of complex composition [J]. Sov Phys Solid State, 1959, 1: 907–908.
[5]  DRABKIN G M, ZABIDAROV E I, KOVALEV A V. Spontaneous magnetization and domain formation in ferromagnets near the Curie point [J]. Zh Eksp Teor Fiz, 1975, 69: 1804–1816.
[6]  VENEVTSEV Y N, GAGULIN V V, ZHITOMIRSKY I D. Material science aspects of seignette-magnetism problem [J]. Ferroelectrics, 1987, 73: 221–248.
[7]  FOX D L, SCOTT J F. Ferroelectrically induced ferromagnetism [J]. J Phys CM, 1977, 10: L329–L331.
[8]  FIEBIG M, FROHLICH D, KOHN K, et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation [J]. Phys Rev Lett, 2000, 84: 5620–5623.
[9]  Hill N A, Rabe K M. First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite [J]. Phys Rev B, 1999, 59: 8759–8769.
[10]  GUO H Y, WILSON I H, XU J B, et al. Aging effect on the ferroelectric property of YMnO3 thin film [J]. Ferroelectrics, 2001, 259: 181–185.
[11]  SMOLENSKY G A, ISUPOV V A, AGRONOVSKAYA A I. A new group of ferroelectrics-(with layered structure)[J]. Sov Phys Solid State, 1959, 1: 149–150.
[12]  WANG J, NEATON J B, ZHENG H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures [J]. Science, 2003, 299: 1719–1722.
[13]  LEBEUGLE D, COLSON D, FORGET A et al. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals [J]. Phys Rev B, 2007, 76: 024116.
[14]  CHU Y H, ZHAO T, CRUZ M P, et al. Ferroelectric size effects in multiferroic BiFeO3 thin films [J]. Appl Phys Lett, 2007, 90: 252906.
[15]  CHOI T, LEE S, CHOI Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3 [J]. Science, 2009, 324: 63–66.
[16]  YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices [J]. Nat Nanotechnol, 2010, 5: 143–147.
[17]  YU P, LEE J S, OKAMOTO S, et al. Interface ferromagnetism and orbital reconstruction in BiFeO3–La0.7Sr0.3MnO3 heterostructures [J]. Phys Rev Lett, 2010, 105: 027201.
[18]  YU P, CHU Y H, RAMESH R. Oxide interfaces: pathways to novel phenomena [J]. Mater Today, 2012, 15: 320–327.
[19]  TEAGUE J R, GERSON R, JAMES W J. Dielectric hysteresis in single crystal BiFeO3 [J]. Solid State Commun, 1970, 8: 1073–1074.
[20]  SMOLENSKII G A, AGRANOVSKA Y A, ISUPOV V A, et al. New ferroelectrics of complex composition: Pb2MgWO6, Pb3Fe2WO9 and Pb2FeTaO6 [J]. SOVIET PHYSICS-SOLID STATE, 1958, 3: 1981–1983.
[21]  KACZMAREK W, PAJAK Z, POLOMSK A M. Differential thermal analysis of phase transitions in (Bi1−xLax)FeO3 solid solution [J]. Solid State Commun, 1975, 17: 807–810.
[22]  KUMAR M M, PALKAR V R, SRINIVAS K, et al. Ferroelectricity in a pure BiFeO3 ceramic [J]. Appl Phys Lett, 2000, 76: 2764–2766.
[23]  NEATON J B, EDERER C, WAGHMARE U V, et al. First-principles study of spontaneous polarization in multiferroic BiFeO3 [J]. Phys Rev B, 2005, 71: 014113; ZAVALICHE F, YANG S Y, ZHAO T, et al, Multiferroic BiFeO3 films: domain structure and polarization dynamics [J]. Phase Transitions, 2006, 79: 991–1017.
[24]  YUN K Y, NODA M, OKUYAMA M, et al. Structural and multiferroic properties of BiFeO3 thin films at room temperature [J]. J Appl Phys, 2004, 96: 3399–3403.
[25]  JANG H W, BAEK S H, ORTIZ D, et al. Strain-induced polarization rotation in epitaxial (001) BiFeO3 Thin films [J]. Phys Rev Lett, 2008, 101: 107602.
[26]  BEA H, DUPE B, FUSIL S, et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio [J]. Phys Rev Lett, 2009, 102: 217603.
[27]  ZECHES R J, ROSSELL M D, ZHANG J X, et al. A strain-driven morphotropic phase boundary in BiFeO3 [J]. Science, 2009, 326: 977–980.
[28]  ZHANG J X, HE Q, MORGAN T, et al. Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3 [J]. Phys Rev Lett, 2011, 107: 147602.
[29]  KUTNJAK Z, PETZELT J, BLINC R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon [J]. Nature, 2006, 441: 956–959.
[30]  CHEN P, SICHEL-TISSOT R J, JO, J Y. et al. Nonlinearity in the high-electric-field piezoelectricity of epitaxial BiFeO3 on SrTiO3 [J]. Appl Phys Lett, 2012, 100: 062906.
[31]  ZHANG J X, XIANG B, HE Q, et al. Large field-induced strains in a lead-free piezoelectric material [J]. Nat Nanotechnol, 2011, 6: 98–102.
[32]  ZAVALICHE F, SHAFER P, RAMESH R, et al. Polarization switching in epitaxial BiFeO3 films [J]. Appl Phys Lett, 2008, 87: 252902.
[33]  CRUZ M P, CHU Y H, ZHANG J X, et al. Strain control of domain-wall stability in epitaxial BiFeO3 (110) films [J]. Phys Rev Lett, 2007, 99: 217601.
[34]  BAEK S H, JANG H W, FOLKMAN C M, et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices [J]. Nat Mater, 2010, 9: 309–314.
[35]  BALKE N, CHOUDHURY S, JESSE S, et al. Deterministic control of ferroelastic switching in multiferroic materials [J]. Nat Nanotechnol, 2009, 4: 868–875.
[36]  MAZUMDAR D, SHELKE V, ILIEV M, et al. Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films [J]. Nano Lett, 2010, 10: 2555–2561.
[37]  LEE Y H, WU J, LAI C, et al. Influence of La doping in multiferroic properties of BiFeO3 thin films [J]. Appl Phys Lett, 2006, 88: 042903.
[38]  LEE D, KIM M G, RYU S, et al. Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films [J]. Appl Phys Lett, 2005, 86: 222903.
[39]  PABST G W, MARTIN L W, CHU Y H, et al. Leakage mechanisms in BiFeO3 thin films [J]. Appl Phys Lett, 2007, 90: 072902.
[40]  SINGH S K. FeRAMs to provide very low power, high Speeds for new mobile electronic products [C]// Fujitsu Microelectronics America, Inc., Sunnyvale, CA, Press Release, 2006, http://www.fujitsu.com/ca/en/ news/pr/fma_20060802.html.
[41]  YANG H, WANG Y H, WANG H, et al. Oxygen concentration and its effect on the leakage current in BiFeO3 thin films [J]. Appl Phys Lett, 2010, 96: 012909.
[42]  YANG H, JAIN M, SUVOROVA N A, et al. Temperature-dependent leakage mechanisms of Pt/BiFeO3/SrRuO3 thin film capacitors [J]. Appl Phys Lett, 2007, 91: 072911.
[43]  QI X, DHO J, TOMOV R, et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3 [J]. Appl Phys Lett, 2005, 86: 062903.
[44]  PALAI R, KATIYAR R S, SCHMID H, et al. β phase and γ-β metal-insulator transition in multiferroic BiFeO3[J]. Phys Rev B, 2008, 77: 014110.
[45]  YANG H, LUO H M, WANG H, et al. Rectifying current-voltage characteristics of BiFeO3/Nb-doped SrTiO3 heterojunction [J]. Appl Phys Lett, 2008, 92: 102113.
[46]  JIANG A Q, WANG C, JIN K J, et al. A resistive memory in semiconducting BiFeO3 thin-film capacitors [J]. Adv Mater, 2011, 23: 1277.
[47]  YANG C H, SEIDEL J, KIM S Y, et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films [J]. Nat Mater, 2009, 8: 458-493; SEIDEL J, LUO W, SURESHA S J, et al, Prominent electrochromism through vacancy-order melting in a complex oxide [J]. Nat Comm, 2012, 3: 799–803.
[48]  KISELEV S V, ZEROV R P, ZHDANOV G S. Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction [J]. Sov. Phys. Dokl. 1963, 7: 742–735.
[49]  YUDIN V M. Magnetic Properties of BiFeO3 [J]. Sov Phys Solid St, 1966, 8: 217–269.
[50]  FISHER P, POLOMSKA M, SOSNOWSKA I, et al. Temperature dependence of the crystal and magnetic structures of BiFeO3 [J]. J Phys C: Solid St Phys, 1980, 13: 1931–1933.
[51]  EDERER C, SPALDIN N A. Recent progress in first-principles studies of magnetoelectric multiferroics [J]. Current Opinion Solid State Mater Sci, 2005, 9: 128–139.
[52]  EDERER C, SPALDIN N A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite [J]. Phys Rev B, 2005, 71: 060401.
[53]  ALBRECHT D, LISENKOV S, REN W, et al. Ferromagnetism in multiferroic BiFeO3 films: A first-principles-based study [J]. Phys Rev B, 2010, 81: 140401.
[54]  LEBEUGLE D, COLSON D, FORGET A, et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature [J]. Phys Rev Lett, 2008, 100: 227602.
[55]  ZALESSKII A V, FROLOV A A, ZVEZDIN A K, et al. Effect of spatial spin modulation on the relaxation and NMR frequencies of 57Fe nuclei in a ferroelectric antiferromagnet BiFeO3 [J]. JETP, 2002, 95: 101–105.
[56]  RAMAZANOGLU M, RATCLIFF II W, YI H T et al. Giant effect of uniaxial pressure on magnetic domain populations in multiferroic bismuth ferrite [J]. Phys Rev Lett, 2011, 107: 067203.
[57]  DE SOUSA R, MOORE J E. Optical coupling to spin waves in the cycloidal multiferroic BiFeO3 [J]. Phys Rev B, 2008, 77: 012406.
[58]  DE SOUSA R, MOORE J E. Electrical control of magnon propagation in multiferroic BiFeO3 films [J]. Appl Phys Lett, 2008, 92: 022514.
[59]  CAZAYOUS M, GALLAIS Y, SACUTO A, et al. Possible observation of cycloidal electromagnons in BiFeO3 [J]. Phys Rev Lett, 2008, 101: 037601.
[60]  ROVILLAIN P, DE SOUSA R, GALLAIS Y, et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3 [J]. Nat Mater, 2010, 9: 975–979.
[61]  TABARES-MUNOZ C, RIVERA J P, BEZINGES A, et al. Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3 [J]. Jpn J Appl Phys, 1985, 24: 1051–1053.
[62]  SOSNOWSKA I, NEUMAIER T P, STEICHELE E, et al. Spiral magnetic ordering in bismuth ferrite [J]. J Phys C, 1982, 15: 4835– 4846.
[63]  KADOMTSEVA A M, ZVEZDIN A K, POPOV Y F, et al. Space-time parity violation and magnetoelectric interactions in antiferromagnets [J]. JETP Lett, 2004, 79: 571–581.
[64]  RUETTE B, ZVYAGIN S, PYATAKOV A P, et al. Magnetic-field- induced phase transition in BiFeO3 observed by high-field electron spin resonance [J]. Phys Rev B, 2004, 69: 064114.
[65]  MURASHOV V A, RAKOV D N, IONOV V M, et al. Magnetoelectric (Bi, Ln)FeO3 compounds: Crystal growth, structure and properties [J]. Ferroelectrics, 1994, 162: 11–21.
[66]  SINGH A, PANDEY V, KOTNALA R K, et al. Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3 [J]. Phys Rev Lett, 2008, 101: 247602.
[67]  WOJDEL J C, INIGUEZ J. Magnetoelectric response of multiferroic BiFeO3 and related materials from first-principles calculations [J]. Phys Rev Lett, 2009, 103: 267205.
[68]  HOLCOMB M B, MARTIN L W, SCHOLL A, et al. Probing the evolution of antiferromagnetism in multiferroics [J]. Phys Rev B, 2010, 81: 134406; ZHAO T, SCHOLL A, ZAVALICHE F, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature [J]. Nat Mater, 2006, 5: 823–829.
[69]  WOJDEL J C, INIGUEZ J. Ab Initio indications for giant magnetoelectric effects driven by structural softness [J]. Phys Rev Lett, 2010, 105: 037208.
[70]  DIEGUEZ O, GONZALEZ-VAZQUEZ O E, WOJDEL J C, et al. First- principles predictions of low-energy phases of multiferroic BiFeO3 [J]. Phys Rev B, 2011, 83: 094105.
[71]  ESCORIHUELA-SAYALEEO C, DIEGUEZ O, INIGUEZ J, et al. Strain engineering magnetic frustration in perovskite oxide thin films [J]. Phys Rev Lett, 2012, 109: 247202.
[72]  INFANTE I C, JURASZEK J, FUSIL S et al. Multiferroic phase transition near room temperature in BiFeO3 Films [J]. Phys Rev Lett, 2012, 107: 237601.
[73]  MACDOUGALL G J, Christen H M, Siemons W, et al. Antiferromagnetic transitions in tetragonal-like BiFeO3 [J]. Phys Rev B, 2012, 85: 100406.
[74]  KO K, JUNG M H, HE Q, et al. Concurrent transition of ferroelectric and magnetic ordering near room temperature [J]. Nat Commun, 2011, 2, 567–571.
[75]  Liu H J, LIANG C W, LIANG W I, et al. Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and X-ray diffraction [J]. Phys Rev B, 2012, 85: 014104.
[76]  He Q, Chu Y H, Heron J T, et al, Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics [J]. Nat Commun, 2011, 2: 225.
 

how do i know if my wife has cheated men having affairs read
read read here link
why do wife cheat on husband why men cheat how to cheat wife
printable coupons for cialis drug discount coupons coupon for free cialis
sumatriptan side effects sumatriptan side effects sumatriptan side effects
bystolic copay card click bystolic coupon voucher
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com