首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
应用于锂离子电池的无机晶态固体电解质导电性能研究进展
作者:李杨 连芳 周国治 
单位:北京科技大学材料科学与工程学院 北京市新能源材料与技术重点实验室 北京 100083 
关键词:无机晶态固体电解质 离子电导率 离子扩散通道 导电载流子 合成工艺 全固态锂离子电池 
分类号:O611;TM911
出版年,卷(期):页码:2013,41(7):950-958
DOI:
摘要:

固体电解质是电解质材料的一个重要种类,利用固体电解质组装全固态电池是解决锂离子电池安全性差,能量密度低等问题的有效方法。围绕着几类重要的无机晶态固体电解质,包括:钙钛矿型、钠快离子导体型(NASICON)、锂快离子导体型(LISICON)、硫代–锂快离子导体型(thio-LISICON)、石榴石型,对晶体结构、合成工艺及其与电极材料匹配性能的研究进展进行综述,并着重讨论了无机晶态固体电解质应用于锂离子电池的导电机理以及提高离子电导率的原则与方法。
 

women want men how to cheat how do i know if my wife cheated
cialis coupon cialis coupon cialis coupon

Solid electrolyte as one important type of electrolytes is widely investigated. The application of all-solid-state batteries could be an effective solution to the problems of the unsafety, the low energy density and power density of the lithium ion batteries. This review paper represents the crystal structure, synthesis process and performances matching with electrode materials of several important inorganic crystalline solid electrolytes (i.e., perovskite-type, LISICON-type, thio-LISICON, NASICON-type and garnet-type) . In addition, the mechanism of Li ion conduction, the rules and methods to improve the ionic conductivity of these inorganic crystalline solid-state electrolytes were also discussed.
 

online women that cheat with married men married woman looking to cheat
redirect husband cheated unfaithful husband
how to catch a cheater redirect go
基金项目:
中央高校基本科研业务费(FRF-MP-12-005B)。
作者简介:
第一作者:李 杨(1988—),女,博士研究生。 通信作者:连 芳(1974—),女,博士,教授。
open cheat women go
read cheat on husband signs of infidelity
参考文献:

[1]  TARASCON J M, ARMAND M. Issues and challenges facingre chargeable lithium batteries [J]. Nature, 2001, 414(6861): 359–367.
[2]  GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chem Mater, 2010, 22(3): 587–603.
[3]  范欢欢, 周栋, 范丽珍, 等. 现场聚合制备锂离子电池用凝胶聚合物电解质研究进展[J]. 硅酸盐学报, 2013, 41(2): 134–139.
FAN H H, ZHOU D, FAN L Z, et al. Development on in-situ synthesis of gel polymer electrolyte for lithium batteries [J]. J Chin Ceram Soc, 2013, 41(2): 134–139.
[4]  THANGADURAI V, WEPPNER W. Recent progress in solid oxide and lithium ion conducting electrolytes research [J]. Ionics, 2006, 12(1): 81–92.
[5]  KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S–GeS2–P2S5 system [J]. J Electrochem Soc, 2001, 148(7): A742–A746.
[6]  ARBI K, MANDAL S, ROJO J M, et al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2–xAlx? (PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study [J]. Chem Mater, 2002, 14(3): 1091–1097.
[7]  THANGADURAI V, WEPPNER W. Li6ALa2Ta2O12 (A = Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction [J]. Adv Funct Mater, 2005, 15(1): 107–112.
[8]  STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review [J]. Chem Mater, 2003, 15: 3974–3990.
[9]  KNAUTH P. Inorganic solid Li ion conductors: An overview [J]. Solid State Ionics, 2009, 180(14–16): 911–916.
[10]  BOULANT A, BARDEAU J F, JOUANNEAUX A, et al. Reaction mechanisms of Li0.30La0.57TiO3 powder with ambient air: H+/Li+ exchange with water and Li2CO3 formation [J]. Dalton Trans, 2010, 39(16): 3968–3975.
[11]  CRETIN M, FABRY P. Comparative study of lithium ion conductors in the system Li1+xAlxA2−xIV (PO4)3 with AIV=Ti or Ge and 0≤x≤0·7 for use as Li+ sensitive membranes [J]. J European Ceram Soc, 1999, 19(16): 2931–2940.
[12]  ARBI K, ROJO J M, SANZ J. Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−xZrx(PO4)3 materials followed by NMR and impedance spectroscopy [J]. J European Ceram Soc, 2007, 27(13–15): 4215–4218.
[13]  ROBERTSONA A D, WESTA A R, RITCHIE A G. Review of crystalline lithium-ion conductors suitable for high temperature battery applications [J]. Solid State Ionics, 1997(1–2): 1–11.
[14]  郑子山, 张中太, 唐子龙, 等. 锂无机固体电解质[J]. 化学进展, 2003, 15(2): 101–106.
ZHENG Z S, ZHANG Z T, TANG Z L, et al. Lithium inorganic solid electrolytes [J]. Prog Chem (in Chinese), 2003, 15(2): 101–106.
[15]  KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor [J]. Nat Mater, 2011, 10(9): 682–686.
[16]  THANGADURAI V, WEPPNER W. Li6ALa2Nb2O12 (A = Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure [J]. J Am Ceram Soc, 2005, 88(2): 411–418.
[17]  BAN C W, CHOI G M. The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates [J]. Solid State Ionics, 2001, 140(3–4): 285–292.
[18]  BOHNKE O. The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application [J]. Solid State Ionics, 2008, 179(1–6): 9–15.
[19]  ZHANG Y R, CHEN Y. Al,F-doped new perovskite lithium fast ion conductor Li3xLa2/3−x□1/3−2xTi1−yAlyO3−yFy (x = 0.11)[J]. Ionics, 2006, 12(1): 63–67.
[20]  HE L X, YOO H I. Effects of B-site ion (M) substitution on the ionic conductivity of (Li3xLa2/3−x)1+y/2(MyTi1−y)O3 (M = Al, Cr)[J]. Electrochim Acta, 2003, 48(10): 1357–1366.
[21]  BOHNKE O, BOHNKE C, SID’AHMED J O, et al. Lithium ion conductivity in new perovskite oxides [AgyLi1–y]3xLa2/3–x□1/3–2xTiO3 (x = 0.09 and 0≤y≤1)[J]. Chem Mater, 2001, 13(5): 1593–1599.
[22]  MEI A, WANG X L, FENG Y C, et al. Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica [J]. Solid State Ionics, 2008, 179(39): 2255–2259.
[23]  ANANTHARAMULU N, KOTESWARA RAO K, RAMBABU G., et al. A wide-ranging review on Nasicon type materials [J]. J Mater Sci, 2011, 46(9): 2821–2837.
[24]  SUBRAMANIAN M A, SUBRAMANIAN R, CLEARFIELD A. Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf)[J]. Solid State Ionics, 1986, 18–19(1): 562–569.
[25]  BRUCE P G., WEST A R. Ion trapping and its effect on the conductivity of LISICON and other solid electrolytes [J]. J Solid State Chem, 1984, 53(3): 430–434.
[26]  MO Y F, ONG S P, CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material [J]. Chem Mater, 2012, 24(1): 15–17.
[27]  THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta)[J]. J Am Ceram Soc, 2003, 86(3): 437–440.
[28]  CUSSEN E J. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors [J]. Chem Comm, 2006(4): 412–413.
[29]  MURUGAN R, WEPPNER W, SCHMID-BEURMANN P, et al. Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12 [J]. Mater Sci Eng B, 2007, 143(1–3): 14–20.
[30]  MURUGAN R, WEPPNER W, SCHMID-BEURMANN P, et al. Structure and lithium ion conductivity of garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12 [J]. Mater Res Bull, 2008, 43(10): 2579–2591.
[31]  KUWANO J, WEST A R. New Li+ ion conductors in the system, Li4GeO4–Li3VO4 [J]. Mater Res Bull, 1980, 15(11): 1661–1667.
[32]  LEE C K, WEST A R. Liquid-like lithium ion conductivity in Li4–3xAlxGeO4 solid electrolyte [J]. J Mater Chem, 1991, 1: 149–150.
[33]  LIU Z Q, HUANG F Q, YANG J H, et al. New lithium ion conductor, thio-LISICON lithium zirconium sulfide system [J]. Solid State Ionics, 2008, 179(27–32): 1714–1716.
[34]  THANGADURAI V, WEPPNER W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12 [J]. J Solid State Chem, 2006, 179(4): 974–984.
[35]  MURAYAMA M, KANNO R, KAWAMOTO Y, et al. Structure of the thio-LISICON, Li4GeS4 [J]. Solid State Ionics, 2002, 154–155: 789–794.
[36]  KANNO R, HATA T, KAWAMOTO Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON lithium germanium sulfide system [J]. Solid State Ionics, 2000, 130: 97–104.
[37]  AHN B T, HUGGINS R A. Synthesis and lithium conductivities of Li2SiS3 and Li4SiS4 [J]. Mater Res Bull, 1989, 24(7): 889–897.
[38]  MURAYAMA M. Synthesis of new lithium ionic conductor   thio- LISICON—lithium silicon sulfides system [J]. J Solid State Chem, 2002, 168(1): 140–148.
[39]  TACHEZ M, MALUGANI J P, MERCIER R, et al. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4 [J]. Solid State Ionics, 1984, 14(3): 181–185.
[40]  MURAYAMA M, SONOYAMA N, YAMADA A, et al. Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system [J]. Solid State Ionics, 2004, 170(3–4): 173–180.
[41]  WANG D W, YANG Y. Synthesis and Characterization of B-Doped LISICON Solid Electrolytes [C]// 16th International Meeting on Lithium Batteries, Jeju, Korea, 2012: 652.
[42]  AONO H, SUGIMOTO E, SADAOKA Y, et al. Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3) [J]. Solid State Ionics, 1991, 47(3–4): 257–264.
[43]  TAKANO R, TADANAGA K, HAYASHI A, et al. Low Temperature Synthesis of Li7La3Zr2O12 Solid Electrolyte by the Sol-Gel Method [C]// 16th International Meeting on Lithium Batteries, Jeju, Korea, 2012: 216.
[44]  LI Y T, HAN J T, WANG C A, et al. Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 [J]. J Power Sources, 2012, 209: 278–281.
[45]  SCHROEDER M, GLATTHAAR S, BINDER J R. Influence of spray granulation on the properties of wet chemically synthesized Li1.3Ti1.7? Al0.3(PO4)3 (LATP) powders [J]. Solid State Ionics, 2011, 201(1): 49–53.
[46]  WEN Z Y, XU X X, LI J X. Preparation, microstructure and electrical properties of Li1.4Al0.4Ti1.6(PO4)3 nanoceramics [J]. J Electroceram, 2008, 22(1–3): 342–345.
[47]  HUANG L Z, WEN Z Y, WU M F, et al. Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method [J]. J Power Sources, 2011, 196(16): 6943–6946.
[48]  冯守华, 庞广生, 徐如人. 微波诱导合成固体快离子导电材料[J]. 高等学校化学学报, 1996, 10(17): 1495–1499.
FENG Shouhua, PANG Guangsheng , XU Ruren. Synthesis of fast ionic conductor by microwave method [J]. Chem J Chinese U (in Chinese), 1996, 10(17): 1495–1499.
[49]  XIAO Z.B, CHEN S, GUO M. M. Influence of Li3PO4 addition on properties of lithium ion-conductive electrolyte Li1.3Al0.3Ti1.7(PO4)3 [J]. Trans Nonferrous Met Soc China, 2011, 21(11): 2454–2458.
[50]  吴显明, 肖卓炳, 麻明友, 等. 助熔剂LiBO2对Li1.3Al0.3Ti1.7(PO4)3 性质的影响[J]. 硅酸盐学报, 2011, 39(2): 329–333.
WU X M, XIAO Z B, MA M Y, et al. Effect of LiBO2 flux on the properties of Li1.3Al0.3Ti1.7(PO4)3 sintered pellet [J]. J Chin Ceram Soc, 2011, 39(2): 329–333.
[51]  BROUSSE T, FRAGNAUD P, MARCHAND R, et al. All oxide solid-state lithium-ion cells [J]. J Power Sources, 1997, 68: 412–415.
[52]  KOBAYASHI Y, MIYASHIROA H, TAKEUCHIB T, et al. All-solid- state lithium secondary battery with ceramic/polymer composite electrolyte [J]. Solid State Ionics, 2002, 152–153: 137–142.
[53]  BIRKE P, SALAM F, DO RING S, et al. A first approach to a monolithic all solidstate inorganic lithium battery [J]. Solid State Ionics, 1999, 118: 149–157.
[54]  NAGATA K, NANNO T. All solid battery with phosphate compounds made through sintering process [J]. J Power Sources, 2007, 174(2): 832–837.
[55]  KANNO R, MURAYAMA M, INADA T, et al. A self-assembled breathing interface for all-solid-state ceramic lithium batteries [J]. Electrochem Solid-State Lett, 2004, 7(12): A455–A458.
[56]  KOBAYASHI T, INADA T, SONOYAMA N, et al. All solid-state batteries using super ionic conductor, thio-lisicon - Electrode electrolyte interfacial design [J]. Mater Res Soc, 2005, 835: K11.1.1–13.
[57]  KOBAYASHI T, YAMADA A, KANNO R. Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON [J]. Electrochim Acta, 2008, 53(15): 5045–5050.
[58]  OHTA N, TAKADA K, ZHANG L, et al. Enhancement of the high- rate capability of solid-state lithium batteries by nanoscale interfacial modification [J]. Adv Mater, 2006, 18(17): 2226–2229.
[59]  OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries [J]. Electrochem Commun, 2007, 9(7): 1486–1490.
[60]  INADA T, KOBAYASHI T, SONOYAMA N, et al. All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON [J]. J Power Sources, 2009, 194(2): 1085–1088.
[61]  KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte [J]. J Power Sources, 2008, 182(2): 621–625.
 

my husband cheated on me click here women who cheat on husband
why married men cheat on their wives women cheat on men
printable coupons for cialis outbackuav.com coupon for free cialis
amoxicillin amoxicillin amoxicillin
abortion pill abortion pill abortion pill
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com