[1] SPRINGENSCHMID R, BREITENBÜCHER R. Influence of constituents, mix proportions and temperature on cracking sensitivity of concrete [C]// SPRINGENSCHMID R ed. Prevention of Thermal Cracking in Concrete at Early Ages, Rilem Report 15. London: E&FN Spon, 1998: 40–50.
[2] 李光伟. 混凝土抗裂能力的评价[J]. 水利水电科技进展, 2001, 21(2): 33–36.
LI Guangwei. Adv Sci Technol Water Res (in Chinese), 2001, 21(2): 33–36.
[3] 刘数华, 方坤河, 曾力, 等. 混凝土抗裂评价指标综述[J]. 混凝土, 2004(5): 32–33.
LIU Shuhua, FANG Kunhe, ZENG Li, et al. Concrete (in Chinese), 2004(5): 32–33.
[4] 黄国兴. 对“碾压混凝土抗裂性能的研究”一文的商榷[J]. 水力发电, 2005, 31(2): 72–74.
HUANG Guoxing. Water Power (in Chinese), 2005, 31(2): 72–74.
[5] 陈波, 蔡跃波, 丁建彤. 大坝混凝土抗裂性综合评价指标[J]. 混凝土, 2008(10): 5–7.
CHEN Bo, CAI Yuebo, DING Jiantong. Concrete (in Chinese), 2008(10): 5–7.
[6] SHAH H R, WEISS J. Quantifying shrinkage cracking in fiber reinforced concrete using the ring test [J]. Mater Struct, 2006, 39(293): 887–899.
[7] SHALES C A, HOVER K C. Influence of mix proportions and construction operations on plastic shrinkage cracking in thin slabs [J]. ACI Mater J, 1998, 85(6): 495–504.
[8] BENTUR A. Early age cracking tests [C]// BENTUR A ed. Early Age Cracking in Cementitious Systems. London: E&FN Spon, 2003: 241–254.
[9] SPRINGENCHMID R, GIERLINGER E, KIERNOZYCKI W. Thermal stress in mass concrete: a new testing method and the influence of different cement [C]// 15th Congress on Large Dams, Lausanne, Switzerland, 1985: 57–72.
[10] 林志海, 覃维祖. 温度应力试验机与温度应力实验[C]//第八届全国混凝土耐久性学术交流会论文集, 杭州, 2012: 51–62.
LIN Zhihai, QIN Weizu. Temperature stress testing machine and temperature stress test [C]// Proc. 8th Natl. Symp. on Concret Durability,Hangzhou, 2012: 51–62. (in Chinese)
[11] SCHÖPPEL K, PLANNERER M, SPRINGENSCHMID R. Determination of restraint stresses and of material properties during hydration of concrete with the temperature-stress-testing machine [C]// SPRIN- GENSCHMID R ed. Thermal Cracking In Concrete at Early Ages. London: E&FN Spon, 1994: 153–160.
[12] VAN BREUGEL K. Prediction of temperature development in hardening concrete [C]// SPRINGENSCHMID R ed. Prevention of Thermal Cracking in Concrete at Early Ages, Rilem Report 15. London: E&FN Spon, 1998: 51–75.
[13] BREITENBUCHER R. Investigation of thermal cracking with the cracking-frame [J]. Mater Struct, 1990, 23: 172–177.
[14] EMBORG M. Models and methods for computation of thermal stresses [C]// SPRINGENSCHMID R ed. Prevention of Thermal Cracking in Concrete at Early Ages, Rilem Report 15. London: E&FN Spon, 1998: 179–230.
[15] MANGOLD M. Methods for experimental determination of thermal stresses and crack sensitivity in the laboratory [C]// SPRINGENS- CHMID R ed. Prevention of Thermal Cracking in Concrete at Early Ages, Rilem Report 15. London: E & FN Spon, 1998: 26–39.
[16] BREITENBÜCHER R, MANGOLD M. Minimization of thermal cracking in concrete at early ages [C]// SPRINGENSCHMID R ed. Rilem Proceedings 25, Thermal Cracking in Concrete at Early Ages. London: E & FN Spon, 1995: 205–212.
[17] 富文权, 韩素芳. 混凝土致裂温度的裂框试验[J]. 混凝土, 2004(1): 36–37.
FU Wenquan, HAN Sufang. Concrete (in Chinese), 2004(1): 36–37.
[18] SPRINGENSCHMID R, BREITENBÜCHER R, MANGOLD M. Development of the cracking frame and the temperature-stress testing machine [C]// SPRINGENSCHMID R ed. Thermal Cracking in Concrete at Early Ages London: E & FN Spon, 1994: 37–144.
[19] RILEM TC 119-TCE. Recommendations of TC 119-TCE: Avoidance of thermal cracking in concrete at early ages [J]. Mater Struct, 1997, 30(202): 461–464.
[20] WHIGHAM J. Evaluation of restraint stresses and cracking in early- age concrete with the rigid cracking frame [D]. AL: Auburn University, 2005.
[21] MANGOLD M. Methods for experimental determination of thermal stresses and crack sensitivity in the laboratory [C]// SPRINGENSCHMID R ed. Rilem Report 15, Prevention of Thermal Cracking in Concrete at Early Ages. London: E & FN Spon, 1998: 26–39.
[22] SPRINGENSCHMID R, BREITENBIICHER R. Are low heat cements the most favourable cements for the prevention of cracks due to heat of hydration? [J]. Concr. Precasting Plant Technol, 1986, 52(11): 704– 711.
[23] RIDING K A, POOLE J L, SCHINDLER A K, et al. Quantification of effects of fly ash type on concrete early-age cracking [J]. ACI Mater J, 2008, 105(2): 149–155.
[24] MEADOWS J L. Early-age cracking of mass concrete structures [D]. AL: Auburn University, 2007.
[25] BYARD B E, SCHINDLER A K, BARNES R W, et al. Cracking tendency of bridge deck concrete [J]. Transp Res Rec, 2010(2164): 122–131.
[26] KIM J K, JEON S E, KIM K H. Apparatus for and method of measuring thermal stress of concrete structures [P]. US Patent, 6591691B2. 2003–07–15.
[27] MANGOLD M. Methods for experimental determination of thermal stresses and crack sensitivity in the laboratory [C]// SPRINGENSCHMID R ed. Prevention of Thermal Cracking in Concrete at Early Ages, Rilem Report 15. London: E & FN Spon, 1998: 26–39.
[28] SCHÖPPEL K, PLANNERER M, SPRINGENSCHMID R. Determination of restraint stresses and of material properties during hydration of concrete with the temperature-stress-testing machine [C]// SPRIN- GENSCHMID R ed. Thermal Cracking in Concrete at Early Ages. London: E&FN Spon, 1994: 153–160.
[29] KOVLER K, IGARASHI S, BENTUR A. Tensile creep behavior of high strength concretes at early ages [J]. Mater Struct, 1999, 32(219): 383–387.
[30] KOVLER K. Testing system for determining the mechanical behaviour of early-age concrete under restrained and free uniaxial shrinkage [J]. Mater Struct,1994, 27(170): 324–330.
[31] ALTOUBAT S A, LANGE D A. Creep, shrinkage, and cracking of restrained concrete at early-age [J]. ACI Mater J, 2001, 98(4): 323–331.
[32] 张涛. 混凝土早期开裂敏感性影响因素研究[D]. 北京: 清华大学, 2006.
ZHANG Tao. Studies on influencing factors of cracking sensitivity of concrete at early ages (in Chinese, dissertation). Beijing: Tsinghua University, 2006.
[33] MIZOBUCHI T. Discussion on the experimental evaluation of reducing effect of thermal stress of expansive additive based on uniaxial restraint testing device [J]. JCI Conference, 1998, 20(2): 1051–1056.
[34] BJØNTEGAARD Ø. Thermal dilation and autogenous deformation as driving forces to self-induced stresses in high performance concrete [D]. Trondheim: NTNU, Departmentof Structural Eng, 1999.
[35] MORABITO P, BJØNTEGAARD Ø, BREUGEL K VAN, et al. Round Robin Testing Program [C]// MORABITO P ed. IPACS report, TU Luleå, Sweden, 2001.
[36] SULE M S, VAN BREUGEL K. Effect of reinforcement on early-age cracking in high strength concrete [J]. Heron, 2004, 49(3): 273–292.
[37] VAN BREUGEL K, DE VRIES J. Mixture optimization of HPC in view of autogenous shrinkage [C]// Proc 5th Int Symp on Utilization of High Strength/High Performance Concrete, Standefjord, 1999: 1041–1050.
[38] MARUYAMA I, PARK S G, TAKAFUMI N. Time-dependent mechanical properties of concrete under simulated complete restrained at early age [J]. Proc J Concr Instit, 2002, 24(1): 357–362.
[39] PARK S G, MARUYAMA I, KIM J J, et al. Mechanical properties of expansive high-strength concrete under simulated-completely restrained condition at early age [C]// The Ninth East Asia-Pacific Conference on Structural Engineering and Construction: 56–61.
[40] KOENDERS E A B, SCHLANGEN E, LEEGWATER G. A mini-TSTM for measuring paste deformations at early age [C]// JENSEN O M, LURA P, KOVLER K ed. Volume Changes of Hardening Concrete: Testing and Mitigation. Lyngby, Denmark: Rilem Publications S.A.R.L., 2006: 293–302.
[41] 林志海, 覃维祖, 张士海, 等. 混凝土早期温度应力发展与抗裂性能评价[J]. 建筑技术, 2003, 34(1): 34–35.
LIN Zhihai, QIN Weizu, ZHANG Shihai, et al. Architecture Technol (in Chinese), 2003, 34(1): 34–35.
[42] 林志海, 覃维祖, 张士海, 等. 虚拟仪器技术在检测混凝土早期开裂敏感度试验中的应用[J]. 工业建筑, 2003, 33(7): 37–40.
LIN Zhihai, QIN Weizu, ZHANG Shihai, et al. Ind Construct (in Chinese), 2003, 33(7): 37–40.
[43] ZHANG T, QIN WZ. Tensile creep due to restraining stresses in high-strength concrete at early ages [J]. Cem Concr Res, 2006, 36(3): 584–591.
[44] 张国志, 屠柳青, 夏卫华, 等. 混凝土早期开裂评价指标研究[J]. 混凝土, 2005(5): 13–17.
ZHANG Guozhi, TU Liuqing, XIA Weihua, et al. Concrete (in Chinese), 2005(5): 13–17.
[45] LIN Z H. Quantitative evaluation of the effectiveness of expansive concrete as a countermeasure for thermal cracking and the development of its practical application [D]. Tokyo: University of Tokyo, 2006.
[46] 胡曙光, 陈静, 丁庆军, 等. 约束可调式单轴温度–应力试验机. CN Patent, ZL 200620099396.0, 2006.10
HU Shuguang, CHEN Jing, DING Qingjun, et al. Uniaxial restrained and adjusted temperature-stress testing machine (in Chinese), CN Patent, ZL 200620099396.0, 2006.10
[47] 胡曙光, 陈静, 周志锋, 等. 约束可调式单轴温度–应力试验机控制系统[J]. 武汉理工大学学报, 2007, 29(1): 55–57.
HU Shuguang, CHEN Jing, ZHOU Zhifeng. J Wuhan Univ Technol (in Chinese), 2007, 29(1): 55–57.
[48] 胡曙光, 陈静. 混凝土温度–应力检测原理与装备[M]. 北京: 国防工业出版社, 2008: 105–123.
HU Shuguang, CHEN Jing. Principle and Equipment for Concrete Temperature-Stress Detection [M]. Beijing, National Defense Industry Press, 2008: 105–123. (in Chinese)
[49] 蔡跃波, 丁建彤, 陈波, 等. 基于温度应力试验机的大坝混凝土综合抗裂性评价[J]. 东南大学学报: 自然科学版, 2010, 40(1): 171– 175.
CAI Yuebo, DING Jiantong, CHEN Bo, et al. J Southeast Univ:Nat Sci Ed (in Chinese), 2010, 40(1): 171–175.
[50] 陈波, 蔡跃波, 丁建彤, 等. 水泥细度对早龄期碾压混凝土综合抗裂性的影响[J](Eng). 硅酸盐学报, 2010, 38(9): 1677–1681.
CHEN Bo, CAI Yuebo, DING Jiantong, et al. J Chin Ceram Soc, 2010, 38(9): 1677–1681.
[51] 丁建彤, 陈波, 蔡跃波, 等. 温度历程对早龄期混凝土抗裂性的影响[J]. 江苏大学学报: 自然科学版, 2010, 32(2): 236–240.
DING Jiantong, CHEN Bo, CAI Yuebo, et al. J Jiangsu Univ: Nat Sci Ed (in Chinese), 2010, 32(2): 236–240.
[52] CHEN B, DING J T, CAI Y B. Influence of aggregates on cracking resistance of concrete at early age [J]. Appl Mech Mater, 2012, 151: 474–479.
[53] CHEN B, CAI Y B, DING J T, et al. Crack resistance evaluating of hsc based on thermal stress testing [J]. Adv Mater Res, 2011, 168–170: 716–720.
[54] HINTZEN W, THIELEN G. Influences of concrete technology on cracking due to the heat of hydration [C]// THIELEN G ed. Concrete Technology Reports 1998–2000. Düsseldorf: Verlag Bau + Technik, 2001: 61–72.
[55] BJØNTEGAARD Ø, SELLEVOLD E J. The temperature-stress testing machine (tstm): capabilities and limitations [C]// First International Rilem Symposium on Advances in Concrete Through Science and Engineering. London: E&FN Spon, 2004.
[56] ALTOUBAT S A, LANGE D A. Creep, Shrinkage, and cracking of restrained concrete at early age [J]. ACI Mater J, 2001, 98(4): 323–331.
|