摘要:
|
采用机械混合和高温固相反应法,在2% (摩尔分数) ZnO掺杂BaZr0.63Ce0.27Y0.10O2.95的质子导体(BZCY-Z2)中添加0~15%(摩尔分数) NaCl,在1 400 ℃保温4 h,制备BaZr0.63Ce0.27Y0.10O2.95/ZnO/NaCl(BZCY-Z2-Cl)复相质子导体。结果显示,加入NaCl作为复相烧结助剂后,由于出现液相,降低了试样的烧结温度与保温时间,从而改善了试样的烧结性能;NaCl均匀分布于晶界,改善了晶界特性,提高了晶界质子导电性,质子导体于700 ℃时在湿氢气氛中总电导率达7.48 × 10–3 S/cm;电解质支撑型单元电池测试结果表明,单电池在550、600、650和700 ℃下离子传导系数分别达到0.97、0.97、0.95和0.93,表明该电解层材料为良好的质子导体;700 ℃时功率密度为17 mW/cm2,由于电解层厚度较厚(0.9 nm),导致输出功率相对较低。上述结果表明所制备的质子导体材料具有良好的电化学性能。open open My husband cheated on me
|
The BaZr0.63Ce0.27Y0.10O2.95/ZnO/NaCl (BZCY-Z2-Cl) proton conductors with the heterogeneous structure were synthesized with NaCl of 5%, 10% and 15% (in mole fraction) to ZnO of 2% doped BaZr0.63Ce0.27Y0.10O2.95 proton conductors (i.e., BZCY-Z2) through a mechanical-mixing process and sintering at 1 400 ℃ for 4 h. The results show that the sintering temperature and soaking time can be reduced due to the presence of liquid phase after the addition of NaCl added as a sintering aid. Therefore, the sintering properties of the BZCY-Z2-Cl proton conductor are improved by the addition of NaCl. NaCl is homogeneously distributed on the grain boundary, changing the characteristics of grain boundary. As a result, the protonic conduction along the grain boundary is enhanced. The total conductivity of the protonic conductor reaches 7.48 × 10–3 S/cm at 700 ℃ in wet hydrogen. The experimental results of a single fuel cell with electrolyte-supported configuration reveal that the ionic transport number is 0.97, 0.97, 0.95 and 0.93 at 550, 600, 650 and 700 ℃, respectively, revealing that it is a superior protonic conductor. It also deliveries a maximum output power density of 17 mW/cm2 at 700 ℃. The lower output power density is due to a thick electrolyte (0.9 mm in thickness). These indicate that the superior electrochemical performance of the NaCl-modified protonic conductor could be obtained.why women cheat on husbands online link open open My husband cheated on me
|
基金项目:
|
贵州省省校科技合作计划项目([2011]7002)。
|
作者简介:
|
|
参考文献:
|
[1] LI Y, GUO R S, WANG C, et al. Stable and easily sintered BaCe0.5? Zr0.3Y0.2O3 electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells [J]. Electrochim Acta, 2013, 95: 95–101.
[2] LI J, GUO R S, JIANG H. Preparation and electrochemical properties of SrCe0.4Zr0.4Yb0.2O2.9 electrolyte [J]. Bull Mater Sci, 2012, 35(6): 957–960.
[3] GUO R S, WU L J, REN J X, et al. Effects of Sc doping on electrical conductivity of BaZrO3 protonic conductors [J]. Rare Met, 2012, 31(1): 71–74.
[4] PENG Z Z, GUO R S, YIN Z G, et al. Influences of ZnO on the properties of SrZr0.9Y0.1O2.95 protonic conductor [J]. J Am Ceram Soc, 2008, 91(5): 1534–1538.
[5] 江虹, 徐江海, 章兴华, 等. 添加B2O3对Y掺杂BaZrO3烧结性及电导率的影响[J]. 硅酸盐学报, 2012, 40(7): 970–973.
JIANG Hong, XU Jianghai, ZHANG Xinghua, et al. J Chin Ceram Soc, 2012, 40(7): 970–973.
[6] 王贺. ZnO对Y掺杂BaCeO3–BaZrO3固溶体的烧结行为及其电性能研究[D]. 合肥: 中国科学技术大学, 2009.
WANG He. Effects of ZnO additive on sinterability and electrochemical performances of BaCeO3–BaZrO3 electrolyte (in Chinese, dissertation). Hefei: University of Science and Technology of China, 2009.
[7] GUO R S, WU L J, GAO Y Y, et al. Fabrication and properties of Ba(Zr0.63Ce0.27)Y0.1O3– /ZnO electrolyte materials [J]. Key Engineering Materials, 2012, 512–515: 1559–1563.
[8] 吕振刚, 郭瑞松, 代凤英, 等. 复合掺杂对YSZ电解质材料烧结性与电性能的影响[J]. 稀有金属材料与工程, 2005, 34(12): 1961–1964.
Lü Zhengang, GUO Ruisong, DAI Fengying, et al. Rare Met Mater Eng, 2005, 34(12): 1961–1964.
[9] 江虹, 郭瑞松, 任建勋. ZnO对8YSZ电解质材料的烧结性与电化学性能的影响[J]. 硅酸盐学报, 2010, 38(8): 1434–1439.
JIANG Hong, GUO Ruisong, REN Jianxun. J Chin Ceram Soc, 2005, 34(12): 1961–1964.
[10] 江虹, 郭瑞松, 徐江海, 等. 氧化钇掺杂锆铈酸钡质子导体的制备及性能研究[J]. 无机材料学报, 2012, 27(12): 1256–1260.
JIANG Hong, GUO Ruisong, XU Jianghai, et al. J Inorg Mater, 2012, 27(12): 1256–1260.
[11] AZAD A K, IRVINE J T S. Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce, Zr)1–xScxO3–δ [J]. Solid State Ionics, 2007, 178(7–10): 635–640.
[12] ZHU B, ALBINSSIN I, MELLANDER B, et al. Intermediate-temperature proton-conducting fuel cells - Present experience and future opportunities [J]. Solid State Ionics, 1999, 125(1–4): 439–446.
[13] PENG Z Z, GUO R S, YIN Z G, et al. BaZr0.9Y0.1O2.95/Na2SO4 composite with enhanced protonic conductivity [J]. J Wuhan Univ Technol Mater Sci Edit, 2009, 24(2): 269– 272.
[14] KIM S G, YOON S P, NAM S W, et al. Fabrication of high power density tubular type solid oxide fuel cells [J]. Solid State Ionics, 1994, 72: 253–256.
[15] VAN HERLE J, IHRINGER R, VASQUEZ CAVIERES R, et al. Anode supported solid oxide fuel cells with screen-printed cathode [J]. J Eur Ceram Soc, 2001, 21: 1855–1859
[16] GUO R S, DENG Y P, GAO Y Y et al. Fabrication and properties of Ba(Zr1–xCex)0.9Y0.1O2.95/NaCl composite electrolyte materials [J]. J Alloys Comp, 2011, 509(36): 8894–8900.
[17] TAO S W, MENG G Y. The pronton and oxygen ion conduction in a NaCl based composite electrolyte [J]. J Mater Sci Lett, 1999, 18: 81–84.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|