参考文献
[1] Bao S J, Li C M, Zang J F, et al. New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications[J]. Adv. Funct. Mater. 2008, 18: 591–599.
[2] Regan B O and Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature. 1991, 353: 737-740.
[3] Mulmudi H K, Batabyal S K, Rao M, et al. Solution processed transition metal sulfides : application as counter electrodes in dye sensitized solar cells[J]. Phys. Chem. Chem. Phys., 2011, 13: 19307-19309.
[4] Fujishima A, Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor[J]. Nature.1972, 238: 37-38.
[5] Fox MA and Dulay MT. Heterogeneous photocatalysis. Chem. Rev. 1993, 93:341-357.
[6] Feng X J, Shankar K, Varghese O K, et al. Vertically Aligned Single Crystal TiO2 Nanowire arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications[J]. Nano Lett. 2008, 8: 3781-3786.
[7] 庄惠芳,赖跃坤,李静等. 高度有序的二氧化钛纳米管阵列的制备及其光催化活性的研究[J]. 化学学报. 2007, 65: 2363-2369.
Zhuang H F, Lai Y K, Li J, et al. The Preparation of Ordered TiO2 Nanotubes arrays and Their Photocatalytic activity of Study[J]. Acta Chim. Sinica. 2007, 65:2363-2369.
[8] Lei B X, Liao J Y, Kuang D B, et al. Ordered Crystalline TiO2 Nanotube Arrays On Transparent FTO Glass for Efficient Dye-Sensitized Solar Cells[J]. J. Phys. Chem.C. 2010, 114: 15228-15233.
[9] Liu B, Aydil E S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc.2009, 131: 3985-3990.
[10] Wang M K, Bai J, Florian L F, et al. Solid-State Dye-Sensitized Solar Cells using Ordered TiO2 Nanorods on Transparent Conductive Oxide as Photoanodes[J]. J. Phys. Chem. C. 2012, 116: 3266-3273.
[11] Liu B, Aydil E S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc. 2009, 131: 3985-3990.
[12] Berhe S A, Nag S, Molinets Z, et al. In?uence of Seeding and Bath Conditions in Hydrothermal Growth of Very Thin (∼20 nm) Single-Crystalline Rutile TiO2 Nanorod Films[J]. ACS Appl. Mater. Interfaces 2013, 5: 1181−1185.
[13] Zhang H M, Liu P, Zhao H J, ea al. Facile Fabrication of Anatase TiO2 Microsphers on Solid Substrates and Surface Crystal Facet Transformation from {001} to {101}[J]. Chem. Eur. J. 2011, 17: 5949–5957.
[14] Liu S W, Yu J G, Jaroniec M. et al. Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed {001} Facets[J]. J. Am. Chem. Soc. 2010, 132: 11914–11916.
[15] Koo H J, Kim Y J, Lee W I. et al. Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells[J]. Adv. Mater. 2008, 20: 195–199.
[16] Li H X, Bian Z F, Zhu J. et al. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity[J]. J. Am. Chem. Soc. 2007, 129: 8406-8407.
[17] Zheng Z K, Huang B B, Lu J B. et al. Hierarchical TiO2 Microspheres: Synergetic Effect of {001} and {101} Facets for Enhanced Photocatalytic Activity[J].Chem. Eur. J. 2011, 17: 15032-15038.
[18] Yoon S, Manthiram A. Hollow Core- Shell Mesoporous TiO2 Spheres for Lithium Ion Storage[J]. J. Phys. Chem. C. 2011, 115: 9410-9416.
[19] Hao F, Wang X, Zhou C, et al. Efficient Light Harvesting and Charge Collection of Dye-Sensitized Solar Cells with (001) Faceted Single Crystalline Anatase Nanoparticles[J]. J. Phys. Chem. C. 2012, 116: 19164-19172.
|