参考文献:
[1] BAO S J, LI C M, ZANG J F, et al. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications [J]. Adv Funct Mater, 2008, 18: 591-599.
[2] REGAN B O, GRATZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.
[3] MULMUDI H K, BATABYAL S K, RAO M, et al. Solution processed transition metal sulfides: application as counter electrodes in dye sensitized solar cells [J]. Phys Chem Chem Phys, 2011, 13: 19307-19309.
[4] FUJISHIMA A, HONDA K. Photolysis-decomposition of water at the surface of an irradiated semiconductor [J]. Nature, 1972, 238: 37-38.
[5] FOX M A, DULAY M T. Heterogeneous photocatalysis [J]. Chem Rev, 1993, 93:341-357.
[6] FENG X J, SHANKAR K, VARGHESS O K, et al. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications [J]. Nano Lett, 2008, 8: 3781-3786.
[7] 庄惠芳,赖跃坤,李静等.高度有序的二氧化钛纳米管阵列的制备及其光催化活性的研究[J].化学学报,2007, 65: 2363-2369.
ZHUANG H F, LAI Y K, LI J, et al. Acta Chim Sin(in Chinese), 2007, 65:2363-2369.
[8] LEI B X, LIAO J Y, KUANG D B, et al. Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells [J]. J Phys Chem C, 2010, 114: 15228-15233.
[9] LIU B, AYDIL E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells [J]. J Am Chem Soc, 2009, 131: 3985-3990.
[10] WANG M K, BAI J, FLORIAN L F, et al. Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes [J]. J Phys Chem C, 2012, 116: 3266-3273.
[11] LIU B, AYDIL E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells [J]. J Am Chem Soc, 2009, 131: 3985-3990.
[12] BERHE S A, NAG S, MOLINETS Z, et al. Infuence of seeding and bath conditions in hydrothermal growth of very thin (-20nm) single-crystalline rutile TiO2 nanorod films [J]. ACS Appl Mater Interface, 2013, 5: 1181-1185.
[13] ZHANG H M, LIU P, ZHAO H J, et al. Facile fabrication of anatase TiO2 microsphers on solid substrates and surface crystal facet transformation from {001} to {101} [J]. Chem Eur J, 2011, 17: 5949-5957.
[14] LIU S W, YU J G, JARONIEC M, et al. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets [J]. J Am Chem Soc, 2010, 132: 11914-11916.
[15] KOO H J, KIM Y J, LEE W I, et al. Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells [J]. Adv Mater, 2008, 20: 195-199.
[16] LI H X, BIAN Z F, ZHU J, et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity [J]. J Am Chem Soc, 2007, 129: 8406-8407.
[17] ZHENG Z K, HUANG B B, LU J B, et al. Hierarchical TiO2 microspheres: synergetic effect of {001} and {101} facets for enhanced photocatalytic activity [J]. Chem Eur J, 2011, 17: 15032-15038.
[18] YOON S, MANTHIRAM A. Hollow core-shell mesoporous TiO2 spheres for lithium ion storage [J]. J Phys Chem C, 2011, 115: 9410-9416.
[19] HAO F, WANG X, ZHOU C, et al. Efficient light harvesting and charge collection of dye-sensitized solar cells with (001) faceted single crystalline anatase nanoparticles [J]. J Phys Chem C, 2012, 116: 19164-19172. redirect go why women cheat on men they love
|