References:
[1] IIJIMA S. Helical microtubes of graphitic carbon [J]. Nature, 1991, 354: 56-8.
[2] YU Xun, KWON Eil. A carbon nanotube/cement composite with piezoresistive properties [J]. Smart Mater Struct, 2009. (Online at stacks.iop.org/SMS/18/055010).
[3] LI Gengying, WANG Peiming, ZHAO Xiaohua. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotube [J]. Carbon, 2005, 43: 1239-1245.
[4] ANDO Y. The preparation of carbon nanotubes [J]. Fuel Sci Technol, 1994, 2(2): 173-80.
[5] SALVETAT J P, BONARD J M, THOMSON N H, et al. Mechanical properties of carbon nanotubes [J]. Appl Phys A, 1999, 69 (3): 255-260.
[6] MASERr W K, BENITO A M, MARTINEZ M T. Production of carbon nanotubes the light approach [J]. Carbon, 2002, 40(10): 1685-1695.
[7] MARIA S. KONSTA-GDOUTOS, ZOI S. Metaxa, et al. Highly dispersed carbon nanotube reinforced cement based materials [J]. Cem Concr Res, 2010, 40: 1052-1059.
[8] BELYTSCHKO T, XIAO S P, SCHATZ G C, et al. Atomistic simulations of nanotube fracture [J]. Phys Rev B, 2002, 65 (23): 235430-235437.
[9] LAU A K-T, HUI D. The revolutionary creation of new advanced materials-carbon nanotube [J]. Compos Part B, 2002, 33: 263-277.
[10] WEI T, FAN Z, LUO G, et al. A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness [J]. Mater Lett, 2008, 62: 641-644.
[11] ZHU Y F, SHI L, LIANG J, et al. Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics [J]. Compos Part B, 2008, 39: 1136-1141.
[12] LEE H, MALL S, HE P, et al. Characterization of carbon nanotube/nanofiber-reinforced polymer composites using an instrumented indentation technique [J]. Compos Part B, 2007, 38: 58-65.
[13] ESAWIA A M K, MORSI K, SAYED A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites [J]. Mater Sci Eng A, 2009, 508: 167-173.
[14] MAKAR J M, BEAUDOIN J J. Carbon nanotubes and their applications in the construction industry [C]//Proceedings of the First International Symposium on Nanotechnology in Construction, Paisley, Scotland, 2003:331-41.
[15] CHONG K P, GARBOCZI E J. Smart and designer structural material systems [J]. Prog Struct Mater Eng, 2002, 4: 417-30.
[16] SANCHEZ F, SOBOLEV K. Nanotechnology in concrete-A review [J]. Constr Build Mater, 2010, 24: 2060-2071.
[17] MARKER J M, MARGESON J, LUH J. Carbon nanotube/cement composites-early results and potential applications [C]//In: BANTHIA N, et al, editors. Proceedings of 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Vancouver, BC, Canada, 2005: 1-10.
[18] LI G Y, WANG P M, ZHAO X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites [J]. Cem Concr Compos, 2007, 29(5): 377-82.
[19] KONSTA-GDOUTOS M S, METAXA Z S, SHAP S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites [J]. Cem Concr Compos, 2010, 32(2): 110-115.
[20] CHONG K P, GARBOCZI E J. Smart and designer structural material systems [J]. Prog Struct Mater Eng, 2002, 4: 417-30.
[21] CHAIPANICH A, NOCHAIYA T, WONGKEO W, et al. Compressive strength and microstructure of carbon nanotubes-fly ash cement composites [J]. Mater Sci Eng A, 2010, 527: 1063-1067.
[22] NOCHAIYA T, TOLKIDTIKUL P, SINGJAI P, et al. Microstructure and characterizations of Portland-carbon nanotubes pastes [J]. Adv Mater Res, 2008, 55: 549-552.
[23] TORKITTIKUL P, CHAIPANICH A. Bioactivity properties of white Portland cement paste with carbon nanotubes [C]//Proceedings of INEC 2010 3rd International Nanoelectronics Conference, Hong Kong, China, 2010: 838-839.
[24] CWIRZEN A, HABERMEHL-CWIRZEN K, NASIBULIN A, et al. SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles [J]. Mater Char, 2008. (Available online 12 November 2008).
[25] SHAH S P, KONSTA-GDOUTOS M S, METAXA Z S, et al. Nanoscale modification of cementitious materials [C]//In: BITTNAR Z, BARTOS P J M, NEMECEK J, et al. editors. Nanotechnology in Construction: Proceedings of the NICOM3 (3rd International Symposium on Nanotechnology in Construction). Prague, Czech Republic, 2009: 125-30.
[26] CWIRZEN A, HABERMEHL-CWIRZEN K, PENTTALA V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites [J]. Adv Cem Res, 2008, 20(2):65-73.
[27] SAEZ D E IBARRA Y, GAITERO JJ, ERKIZIA E, et al. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions [J]. Phys Status Solidi, 2006, 203(6): 1076-81.
[28] JUNRONG Y, GROSSIORD N, KONING C E, et al. Controlling the dispersion o multi-wall carbon nanotubes in aqueous surfactant solution [J]. Carbon, 2007, 45 (3): 618-623.
[29] T. HIELSCHER. Ultrasonic production of nano-size dispersions and emulsions [C]//Proceedings of 1ST Workshop on NanoTechnology Transfer in Europe. TIMA Editions, Grenoble, France, 2006: 138-143.
[30] KIM A H K, NAMB I W, LEE H K, Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume[J]. Compos Struct, 2014, 107: 60-69.
[31] SANCHEZ F, INCE C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites[J]. Compos Sci Technol, 2009, 69(7/8): 1310-1318.
[32] NAM I W, KIM H K, LRR H K. Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites[J]. Constr Build Mater, 2012, 30: 480-487.
[33] HAN Jiande, SUN Wei, PAN Ganghua, et al. Application of X-ray computed tomography in characterization microstructure changes of cement pastes in carbonation process [J]. J Wuhan Univ Technol: Mater, 2012, 27(2): 358-363.
|