[1] WANG Hong, DU Huiling, YAO Xi. Structural study of Bi2O3–ZnO– Nb2O5 based pyrochlores[J]. Mater Sci Eng, 2003, B99: 20–24.
[2] NINO J C, LANGAGAN M T, RANDALL C A. Correlation between infrared phonon modes and dielectric relaxation in Bi2O3–ZnO–Nb2O5 cubic pyrochlore[J]. Appl Phys Lett, 2002, 81( 23):4404–4406.
[3] DING Shihua, YAO Xi, YUAN Li. Study of structure and dielectrc properties of non-stoichiometric Bi2O3–ZnO–Nb2O5 ceramics [J]. J Electroceram, 2008, 21(1): 435–438.
[4] CHEN Sanyuan, LEE Shinnyih, LIN Yihjaw. Phase transformation, reaction kinetics and microwave characteristics of Bi2O3–ZnO–Nb2O5 ceramics[J]. J Eur Ceram Soc, 2003, 23: 873–881.
[5] WANG Qian, WANG Hong, YAO Xi. Structure,dielectric and optical properties of Bi1.5+xZnNb1.5O7+1.5x pyrochlores[J]. Ceram Int, 2009, 35: 143–146.
[6] VALANT M, DAVIES P K. Crystal chemistry and dielectric properties of chemically substituted (Bi1.5Zn1.0Nb1.5)O7 and Bi2 (Zn2/3Nb4/3) O7 pyrochlores[J]. J Am Ceram Soc, 2000, 83(1): 147–53.
[7] CHEN Kai, SHEN Bo, YAO Xi, et al. Research progress of bismuth-based microwave dielectric materials[J]. J Chin Ceram Soc, 2006, 34(11): 1374-1381.
[8] WITHERS R L, WELBERRY T R, LARSSON A. K, et al.Local crystal chemistry induced strain and short range order in the cubic pyrochlore (Bi1.5–αZn0.5–δ)(Zn0.5–γNb1.5–δ)O(7–1.5α–β–γ–2.5δ)[J]. J Solid State Chem, 2004, 177(12): 231–244.
[9] LIU Y, WITHERS R L, WELBERRY T R, et al. Crystal chemistry on a lattice: The case of BZN and BZN–related pyrochlores[J]. J Solid State Chem, 2006, 179(7): 2141–2149.
[10] SHEN B, ZHAI J W, YAO X. Dielectric relaxation and tenability of Bi2O3–ZnO–CaO–Ta2O5 ceramics[J]. Appl Phys Lett, 2005, 86(7): 072902–072903.
[11] GALE J D. GULP: A computer program of the symmetry–adapted simulation of solids[J]. J Chem Soc Faraday Trans, 1997, 93(4): 629-637.
[12] MINERVINI L, GRIMES R W, TABIRA Y, et al. The oxygen positional parameter in pyrochlores and its dependence on disorder[J]. Philosoph Magaz A, 2002, 82(1): 123–135.
[13] PIROVANO C, ISLAM M S, VANNIER R N, et al. Modelling the crystal structure of Aurivillius phases[J]. Solide State Ionics, 2001, 140: 115–123.
[14] WANG Q, WANG H, YAO X. Structure, dielectric and optical properties of Bi1.5ZnNb1.5–xTaxO7 cubic pyrochlores[J]. J Appl Phys, 2007, 101(10): 104116.
[15] YOUN Hyuk–Joon, RANDALL Clive, CHEN Ang, et al. Dielectric relaxation and microwave dielectric properties of Bi2O3–ZnO–Ta2O5 ceramics[J]. J Mater Res, 2002, 17(6): 1502–1506.
[16] SHEN Bo, YAO Xi, PENG Dengshan, et al. Structure and dielectric properties of Bi2O3–ZnO–CaO–Ta2O5 ceramics[J]. Ceram Int, 2004, 30: 1207–1210.
[17] MCCAULEY R A. Structural characteristics of pyrochlore formation[J]. J Appl Phys, 1980, 51(1): 290–297.
[18] BROWN I D, SHANNON R D. Empirical bond-strength-bond-length curves for oxides[J]. Acta Cryst, 1973, A29: 266–282.
[19] BRESE N E, O'Keeffe M. Bond-valence parameters for solid[J]. Acta Crystallograph, 1991, B47(2): 192–197.
[20] CHEN Ang, ZHI Yu, ZHI Jing. Impurity–induced ferroelectric relaxor behavior in quantum paraelectric SrTiO3 and ferroelectric BaTiO3[J]. Phys Rev B, 2000, 61: 957–961.
[21] KAMBA S, POROKHONSKYY V, PASHKIN A, et al. Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore[J]. J Phys Rev B, 2002, 66(5): 054106–054108.
|