[1] LORENTZ T, FRENCH C. Corrosion of reinforcing steel in concrete: effects of materials, mix composition, and cracking[J]. ACI Mater J, 1995, 92 (2): 181–190.
[2] CASTEL A, FRANCY O, and FRANÇOIS R, et al. Chloride diffusion in reinforced concrete beams under sustained loading[C] //Fifth canmet/ACI conference on recent advances in concrete technology, Singapore, 2001: 647–662.
[3] POSTON R W, CARRASQUILLO R L, BREEN J E. Durability of post-tensioned bridge decks[J]. ACI Mater J, 1987, 84(4): 315–326.
[4] ARYA C, OFORI-DARKO F K. Influence of crack frequency on reinforcement corrosion in concrete[J]. Cem Concr Res, 1996, 26(3): 345–353.
[5] SCHIESSL P, RAUPACH M. Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete[J]. ACI Mater J, 1997, 94(1): 56–62.
[6] GOWRIPALAN N, SIRIVIVATNANON V, LIM C C. Chloride diffusivity of concrete cracked in flexure[J]. Cem Concr Res, 2000, 30(5): 725–730.
[7] PETTERSSON K. Criteria for Cracks in Connection with Corrosion in High-Strength Concrete[C]//Fourth International Symposium on Utilisation of High-Strength/ High-Performance Concrete, Paris, France, 1996: 509–517.
[8] PICANDET V, KHELIDJ A, BELLEGOU H. Crack effects on gas and water permeability of concretes[J]. Cem Concr Res, 2009, 39(6): 537–547.
[9] AUDENAERT K, DE SCHUTTER G, MARSAVINA L. Influence of cracks and crack width on penetration depth of chlorides in concrete[J]. Eur J Environm Civil Eng, 2009, 13(5): 561–572.
[10] WANG K, JANSEN D C, SHAH S P, et al. Permeability study of cracked concrete[J]. Cem Concr Res, 1997, 27(3): 381–393.
[11] SONG H W, KWON S J, BYUN K J, et al. Predicting carbonation in early-aged cracked concrete[J]. Cem Concr Res, 2006, 36(5): 979–989.
[12] GRANJU J L, ULLAH BALOUCH S. Corrosion of steel fibre reinforced concrete from the cracks[J]. Cem Concr Res, 2005, 35(3): 572–577.
[13] WIN P P, WATANABE M, MACHIDA A. Penetration profile of chloride ion in cracked reinforced concrete[J]. Cem Concr Res, 2004, 34(7): 1073–1079.
[14] REINHARDT H W. Fluid transport in wedge-split concrete[C]//International RILEM Workshop on Transport Mechanisms in Cracked Concrete, Ghent, elgium, 2007: 8–13.
[15] SCHLANGEN E, YOONI S and DE ROOIJ M R. Measurement of chloride ingress in cracked concrete[C]//International RILEM Workshop on Transport Mechanisms in Cracked Concrete, Ghent, Belgium, 2007: 19–25.
[16] ISMAIL M, TOUMI A, FRANÇOIS R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J]. Cem Concr Res, 2008, 38(8): 1106–1111.
[17] DE SCHUTTER G, AUDENAERT K. Penetration of aggressive substances in cracked concrete[C]//IVth International Symposium-Concrete for a Sustainable Agriculture Agro-, Aqua and Community Applications, Ghent, Belgium, 2002: 232–241.
[18] AUDENAERT K, DE SCHUTTER G, MARSAVINA L. Modelling of chloride penetration in concrete with artificial cracks[C]//International RILEM Symposium on Concrete Modelling-CONMOD’ 08, Delft, Netherland, 2008: 439–446.
[19] MARSAVINA L, AUDENAERT K, DE SCHUTTER G, et al. Experimental and numerical determination of the chloride penetration in cracked concrete[J]. Construct Building Mater, 2009, 23(1): 264–274.
[20] AUDENAERT K, MARSAVINA L, DE SCHUTTER G. Influence of cracks on the service life of concrete structures in a marine environment[J]. Key Eng Mater, 2009, 399: 153–160.
[21] AUDENAERT K, DE SCHUTTER G, MARSAVINA L. Influence of artificial cracks on chloride diffusion[C]//Final Conference on Concrete in Aggresive Aqueous Environments - Performance, Testing and Modeling, Toulouse, France, 2009: 326–333.
[22] PAGE C L, SHORT N R, ELTARRAS A. Diffusion of chloride ions in hardened cement pastes[J]. Cem Concr Res, 1981, 11(3): 395–406.
[23] RINGOT E, BASCOUL A. About the analysis of microcracking in concrete[J]. Cem Concr Compos, 2001, 23(2): 261–266.
[24] AMMOUCHE A, BREYSSE D, HORNAIN H, et al. A new image analysis technique for the quantitative assessment of microcracks in cement-based materials[J]. Cem Concr Res, 2000, 30(1): 25–35.
[25] RODRIGUEZ O G, HOOTON R D. Influence of cracks on chloride ingress into concrete[J]. ACI Mater J, 2003, 100(2): 120–126.
[26] ?AHMARAN M. Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar[J]. J Mater Sci, 2007, 42(22): 9131–9136.
[27] NORDTEST. NT BUILD 443-95 Accelerated chloride penetration[S]. Finland: Nordtest method, 1995.
[28] NORDTEST. NT BUILD 355-97 Chloride diffusion coefficient from migration cell experiments[S]. Finland: Nordtest method, 1997.
[29] NORDTEST. NT BUILD 492-99 Chloride migration coefficient from non-steady-state migration experiments[S]. Finland: Nordtest method, 1999.
[30] ANDRADE C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements[J]. Cem Concr Res, 1993, 23(3): 724–742.
[31] ANDRADE C, SANJUÁN M A, RECUERO A, et al. Calculation of chloride diffusivity in concrete from migration experiments, in non-steady-state conditions[J]. Cem Concr Res, 1994, 24(7): 1214–1228.
[32] LU X. Application of the Nernst-Einstein equation to concrete[J]. Cem Concr Res, 1997, 27(2): 293–302.
[33] 史才军, 元强, 邓德华, 等. 混凝土中氯离子迁移特征的表征[J]. 硅酸盐学报, 2007, 35(4): 522–530.
SHI C, YUAN Q, DENG D, et al. J Chin Ceram Soc, 2007, 35(4): 522-530.
[34] YUAN Q. Fundamental studies on test methods for the transport of chloride ions in cement materials (in English, dissertation), Ghent: Ghent University, Belgium, 2009.
[35] ISMAIL M, TOUMI A, FRANÇOIS R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J]. Cem Concr Res, 2008, 38(8): 1106–1111.
[36] ?AHMARAN M, LI V C. Durability properties of micro-cracked ECC containing high volumes fly ash[J]. Cem Concr Res, 2009, 39(11): 1033–1043.
[37] American Association of State Highway and Transportation Officials. AASHTO T259–02 Standard method of test for resistance of concrete to chloride ion penetration[S]. Washington D C, USA: American Association of State Highway and Transportation Officials, 2002
[38] KATO E, KATO Y, UOMOTO T. Development of simulation model of chloride ion transportation in cracked concrete[J]. J Adv Concr Technol, 2005, 3(1): 85–94.
[39] DAI J G, AKIRA Y, WITTMANN F H, et al. Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: the role of cracks[J]. Cem Concr Compos, 2010, 32(2): 101–109.
[40] JACOBSEN S, MARCHAND J, BOISVERT L. Effect of cracking and healing on chloride transport in OPC concrete[J]. Cem Concr Res, 1996, 26(6): 869–881.
[41] DJERBI A, BONNET S, KHELIDJ A, et al. Influence of traversing crack on chloride diffusion into concrete[J]. Cem Concr Res, 2008, 38(6): 877–883.
[42] LIM C C, GOWRIPALAN N, SIRIVIVATNANON V. Microcracking and chloride permeability of concrete under uniaxial compression[J]. Cem Concr Compos, 2000, 22(5): 353–360.
[43] PETER S, PHIL B, VÉRONIQUE B B, et al. Design of concrete structures. CEB-FIP-Model-Code[R]. London, UK: Thomas Telford, 1993: 24.
|