首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
基于混凝土裂缝特征的氯离子传输性质研究进展
作者:穆松1 2 刘建忠1 2 
单位:1. 高性能土木工程材料国家重点实验室 江苏省建筑科学研究院 南京 210008  2. 江苏苏博特新材料股份有限公司 南京 211103 
关键词:混凝土 裂缝 氯离子传输 试验方法 影响因素 
分类号:TU528
出版年,卷(期):页码:2015,43(6):0-0
DOI:10.14062/j.issn.0454-5648.2015.06.20
摘要:

介绍了混凝土裂缝的诱导试验方法和已开裂混凝土中氯离子传输的试验方法、表征手段及传输性质的影响因素。对比分析了机械力学破损法和非机械力学无损法的差异,阐述了裂缝宽度、裂缝深度、水胶比、水泥与矿物掺合料及其外加剂的含量、保护层厚度、环境氯离子溶液浓度及暴露周期、荷载作用对已开裂混凝土中氯离子传输性质的影响,并对氯离子的传输机理与性质的研究进行了展望。对于混凝土裂缝诱导试验方法,非机械力学无损法适合于定量研究不同裂缝特征对混凝土传输性质的影响,但需建立人造裂缝与实际工程裂缝在混凝土传输性质上的相关性。小于100 µm的裂缝宽度对混凝土中氯离子传输速率的影响显著;当裂缝宽度大于100 µm时,混凝土中氯离子的传输速率变化较小。此外,较高的裂缝深度与水灰比均对混凝土中氯离子传输速率的增加有明显促进作用,但是增加水泥用量与掺加适量矿物掺合料,可减缓已开裂混凝土中氯离子的传输速率。

amoxicillin amoxicillin amoxicillin

This paper reviews the test methods to induce concrete cracking, experimental and characterization methods for chloride transport in cracked concrete and influencing parameters. For these methods of crack preparation, there is a difference between destructive and non-destructive methods to form artificial cracks. The effect of influencing parameters like crack width and depth, ratio of water to cement, cement content, supplementary materials, additive, cover thickness, load, chloride concentration and exposure duration on the chloride transport properties based on some previous work was represented. In addition, some prospects were given to investigate the transport mechanism and the property of cracked concrete in future. For the test methods to induce concrete cracking, the non-destructive method can be used to quantitatively study influence of different cracking parameters on transport properties of concrete. However, it should be established the transport property relationship between artificial and real engineering cracks. As the width is 100 µm below, crack made significant contribution for transport rate of chloride ions. By contrast, crack with a width of higher than 100 µm shown slight effect on the transport rate. In addition, high value of crack depth and ratio of water to binder contributed to the transport rate, while increase of cement amount and addition of mineral admixture can reduce the transport rate.

 

 
基金项目:
国家重点基础研究发展计划(2015CB655105),比利时根特大 学特别研究基金(01SF0309)资助。
作者简介:
第一作者:穆 松(1982—),男,博士。
printable coupons for cialis outbackuav.com coupon for free cialis
cialis coupon cialis coupon cialis coupon
参考文献:

 [1]    LORENTZ T, FRENCH C. Corrosion of reinforcing steel in concrete: effects of materials, mix composition, and cracking[J]. ACI Mater J, 1995, 92 (2): 181–190.

[2]    CASTEL A, FRANCY O, and FRANÇOIS R, et al. Chloride diffusion in reinforced concrete beams under sustained loading[C] //Fifth canmet/ACI conference on recent advances in concrete technology, Singapore, 2001: 647–662.

[3]    POSTON R W, CARRASQUILLO R L, BREEN J E. Durability of post-tensioned bridge decks[J]. ACI Mater J, 1987, 84(4): 315–326.

[4]    ARYA C, OFORI-DARKO F K. Influence of crack frequency on reinforcement corrosion in concrete[J]. Cem Concr Res, 1996, 26(3): 345–353.

[5]    SCHIESSL P, RAUPACH M. Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete[J]. ACI Mater J, 1997, 94(1): 56–62.

[6]    GOWRIPALAN N, SIRIVIVATNANON V, LIM C C. Chloride diffusivity of concrete cracked in flexure[J]. Cem Concr Res, 2000, 30(5): 725–730.

[7]    PETTERSSON K. Criteria for Cracks in Connection with Corrosion in High-Strength Concrete[C]//Fourth International Symposium on Utilisation of High-Strength/ High-Performance Concrete, Paris, France, 1996: 509–517.

[8]    PICANDET V, KHELIDJ A, BELLEGOU H. Crack effects on gas and water permeability of concretes[J]. Cem Concr Res, 2009, 39(6): 537–547.

[9]    AUDENAERT K, DE SCHUTTER G, MARSAVINA L. Influence of cracks and crack width on penetration depth of chlorides in concrete[J]. Eur J Environm Civil Eng, 2009, 13(5): 561–572.

[10]  WANG K, JANSEN D C, SHAH S P, et al. Permeability study of cracked concrete[J]. Cem Concr Res, 1997, 27(3): 381–393.

[11]  SONG H W, KWON S J, BYUN K J, et al. Predicting carbonation in early-aged cracked concrete[J]. Cem Concr Res, 2006, 36(5): 979–989.

[12]  GRANJU J L, ULLAH BALOUCH S. Corrosion of steel fibre reinforced concrete from the cracks[J]. Cem Concr Res, 2005, 35(3): 572–577.

[13]  WIN P P, WATANABE M, MACHIDA A. Penetration profile of chloride ion in cracked reinforced concrete[J]. Cem Concr Res, 2004, 34(7): 1073–1079.

[14]  REINHARDT H W. Fluid transport in wedge-split concrete[C]//International RILEM Workshop on Transport Mechanisms in Cracked Concrete, Ghent, elgium, 2007: 8–13.

[15]  SCHLANGEN E, YOONI S and DE ROOIJ M R. Measurement of chloride ingress in cracked concrete[C]//International RILEM Workshop on Transport Mechanisms in Cracked Concrete, Ghent, Belgium, 2007: 1925.

[16]  ISMAIL M, TOUMI A, FRANÇOIS R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J]. Cem Concr Res, 2008, 38(8): 1106–1111.

[17]  DE SCHUTTER G, AUDENAERT K. Penetration of aggressive substances in cracked concrete[C]//IVth International Symposium-Concrete for a Sustainable Agriculture Agro-, Aqua and Community Applications, Ghent, Belgium, 2002: 232–241.

[18]  AUDENAERT K, DE SCHUTTER G, MARSAVINA L. Modelling of chloride penetration in concrete with artificial cracks[C]//International RILEM Symposium on Concrete Modelling-CONMOD’ 08, Delft, Netherland, 2008: 439–446.

[19]  MARSAVINA L, AUDENAERT K, DE SCHUTTER G, et al. Experimental and numerical determination of the chloride penetration in cracked concrete[J]. Construct Building Mater, 2009, 23(1): 264–274.

[20]  AUDENAERT K, MARSAVINA L, DE SCHUTTER G. Influence of cracks on the service life of concrete structures in a marine environment[J]. Key Eng Mater, 2009, 399: 153–160.

[21]  AUDENAERT K, DE SCHUTTER G, MARSAVINA L. Influence of artificial cracks on chloride diffusion[C]//Final Conference on Concrete in Aggresive Aqueous Environments - Performance, Testing and Modeling, Toulouse, France, 2009: 326–333.

[22]  PAGE C L, SHORT N R, ELTARRAS A. Diffusion of chloride ions in hardened cement pastes[J]. Cem Concr Res, 1981, 11(3): 395–406.

[23]  RINGOT E, BASCOUL A. About the analysis of microcracking in concrete[J]. Cem Concr Compos, 2001, 23(2): 261–266.

[24]  AMMOUCHE A, BREYSSE D, HORNAIN H, et al. A new image analysis technique for the quantitative assessment of microcracks in cement-based materials[J]. Cem Concr Res, 2000, 30(1): 25–35.

[25]  RODRIGUEZ O G, HOOTON R D. Influence of cracks on chloride ingress into concrete[J]. ACI Mater J, 2003, 100(2): 120126.

[26]  ?AHMARAN M. Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar[J]. J Mater Sci, 2007, 42(22): 9131–9136.

[27]  NORDTEST. NT BUILD 443-95 Accelerated chloride penetration[S]. Finland: Nordtest method, 1995.

[28]  NORDTEST. NT BUILD 355-97 Chloride diffusion coefficient from migration cell experiments[S]. Finland: Nordtest method, 1997.

[29]  NORDTEST. NT BUILD 492-99 Chloride migration coefficient from non-steady-state migration experiments[S]. Finland: Nordtest method, 1999.

[30]  ANDRADE C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements[J]. Cem Concr Res, 1993, 23(3): 724–742.

[31]  ANDRADE C, SANJUÁN M A, RECUERO A, et al. Calculation of chloride diffusivity in concrete from migration experiments, in non-steady-state conditions[J]. Cem Concr Res, 1994, 24(7): 1214–1228.

[32]  LU X. Application of the Nernst-Einstein equation to concrete[J]. Cem Concr Res, 1997, 27(2): 293–302.

[33]  史才军, 元强, 邓德华, . 混凝土中氯离子迁移特征的表征[J]. 硅酸盐学报, 2007, 35(4): 522–530.
SHI C, YUAN Q, DENG D, et al. J Chin Ceram Soc, 2007, 35(4): 522-530.

[34]  YUAN Q. Fundamental studies on test methods for the transport of chloride ions in cement materials (in English, dissertation), Ghent: Ghent University, Belgium, 2009.

[35]  ISMAIL M, TOUMI A, FRANÇOIS R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J]. Cem Concr Res, 2008, 38(8): 1106–1111.

[36]  ?AHMARAN M, LI V C. Durability properties of micro-cracked ECC containing high volumes fly ash[J]. Cem Concr Res, 2009, 39(11): 1033–1043.

[37]  American Association of State Highway and Transportation Officials. AASHTO T259–02 Standard method of test for resistance of concrete to chloride ion penetration[S]. Washington D C, USA: American Association of State Highway and Transportation Officials, 2002

[38]  KATO E, KATO Y, UOMOTO T. Development of simulation model of chloride ion transportation in cracked concrete[J]. J Adv Concr Technol, 2005, 3(1): 85–94.

[39]  DAI J G, AKIRA Y, WITTMANN F H, et al. Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: the role of cracks[J]. Cem Concr Compos, 2010, 32(2): 101–109.

[40]  JACOBSEN S, MARCHAND J, BOISVERT L. Effect of cracking and healing on chloride transport in OPC concrete[J]. Cem Concr Res, 1996, 26(6): 869–881.

[41]  DJERBI A, BONNET S, KHELIDJ A, et al. Influence of traversing crack on chloride diffusion into concrete[J]. Cem Concr Res, 2008, 38(6): 877–883.

[42]  LIM C C, GOWRIPALAN N, SIRIVIVATNANON V. Microcracking and chloride permeability of concrete under uniaxial compression[J]. Cem Concr Compos, 2000, 22(5): 353–360.

[43]    PETER S, PHIL B, VÉRONIQUE B B, et al. Design of concrete structures. CEB-FIP-Model-Code[R]. London, UK: Thomas Telford, 1993: 24.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com