首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文

Ce掺杂对0.85Bi4Ti3O12-0.15LiNbO3铋层状压电陶瓷电性能影响

作者:杨帆 江向平 涂娜 邵虹 徐新民 熊珊 
单位:1. 景德镇陶瓷学院材料科学与工程学院 江西省先进陶瓷材料重点实验室 江西 景德镇 333001 
关键词:铋层状结构 压电陶瓷 阻抗谱 电导率 
分类号:TQ174
出版年,卷(期):页码:2015,43(9):0-0
DOI:
摘要:

 采用固相法制备0.85Bi4Ti3O12-0.15LiNbO3-0.75%CeO2(BTO-LN-0.75Ce)铋层状压电陶瓷。通过阻抗谱研究不同温度和频率对样品电性能的影响。结果表明:介电常数ε*的实部ε和虚部ε在低频区域出现分散现象;随频率增大,阻抗(Z*)的实部Z′值逐渐减小,而虚部Z″值先增大后减小。阻抗Cole-Cole图表明:晶粒内部对电传导过程起主要作用, 并可用一个并联的电阻—电容电路等效。 陶瓷样品的阻抗值随温度的升高而减小,电导率值在低频区域相对稳定,且电导率满足Arrhenius关系, 说明陶瓷样品的电导是热激活的过程。BTO-LN-0.75Ce的电导活化能小于BTO-LN的电导活化能,分别为1.591 91.756 2 eV

The cerium modified 0.85Bi4Ti3O12-0.15LiNbO3-0.75%CeO2 (BTO-LN-0.75Ce) piezoelectric ceramics were synthesized by a conventional solid state processing. The effects of temperature and frequency on the electrical properties of ceramics were investigated. The results show that the real (ε) and the imaginary (ε) parts of permittivity both appear dispersive at low frequencies. The values of the real (Z′) part of impedance (Z*) decrease, and the values of the imaginary (Z″) part firstly increase and then decrease with increasing frequency,. According to the Cole-Cole plots, the grain interior is a major contribution to the electrical conduction process as a parallel resistance-capacitance equivalent circuit. The semicircles become smaller when temperature increases, indicating that the impedance decreases with the increase of temperature. The stabilized conductivity appears in the low frequency region at high temperatures. The conductivity obeys the Arrhenius law, showing the thermal activation of the process. The grain activation energy, Ea1(g), of BTO-LN-0.75Ce (i.e., 1.591 9 eV) is lower than Ea2(g) of BTO-LN (i.e., 1.756 2 eV).

基金项目:
国家自然科学基金(51262009);江西省自然科学基金(20133ACB20002,20142BAB216009);江西省研究生创新专项基金(YC2013-S245)资助。
作者简介:
第一作者:杨 帆(1990—),男,硕士研究生。 通讯作者:江向平(1964—),男,教授。
参考文献:

 [1] PAZ DE ARAUJO C A, CUCHLARO J D, MCMILLAN L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes[J]. Nature,1995, 374:627-629.

[2] JIANG X P, YANG Q, CHEN C, et al. Nb-modified Bi4Ti3O12 piezoelectric for high temperature applications [J].  Inorg Mater, 2010, 25(11):11691174.

[3] TAO J, YI Z G, LIU Y, et al. Dielectric tunability, dielectric relaxation, and impedance spectroscopic studies on (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics[J]. J Am Ceram Soc, 2013, 96(6) 18471851.

[4] LIU L J, HUANG Y M, LI Y H, et al. Oxygen-vacancy-related high-temperature dielectric relaxation and electrical conduction in 0.95K0.5Na0.5NbO3–0.05BaZrO3 ceramic[J]. Phys B, 2012, 407:136–139.

[5] DASH U, SAHOO S, CHAUDHURI P, et al. Electrical properties of bulk and nano Li2TiO3 ceramics: A comparative study[J]. J Adv Ceram, 2014, 3(2):89-97.

[6] WEI X.Y., WAN X and YAO X. Dielectric relaxation in paraelectric phase of Ba(Ti,Sn)O3 ceramics[J]. J Electroceram, 2008, 21: 226–229.

[7] LI C C, WEI X Y. Complex impedance analysis on a layered perovskite-like ceramic: La3Ti2TaO11 [J] J Mater Sci, 2012, 47:4200–4204.

[8] JIANG X P, YANG F, CHEN C, et al. Microstructure and electrical properties of cerium- modified bismuth-layer 0.85Bi4Ti3O12-0.15LiNbO3 piezoelectric ceramics[J], J Chin Ceramic Soc, 2014, 42(12):1501-1506.

[9] JONSCHER A K. Low frequency dispersion in carrier-dominated dielectrics[J], Philos Mag B, 1978, 38: 587–601.

[10] JONSCHER A K, DUBE D C. Low frequency dispersion in tri-glycyne sulphate[J], Ferroelectrics, 1977,17: 533–536.

[11] ZHIGAO L, BONNET J P, RAVEZ J, et al. Correlation between low frequency dielectric dispersion (LFDD) and impedance relaxation in ferroelectric ceramic: Pb2KNb4TaO15[J], Solid State Ion, 1992, 57: 235–244.

[12] NEALON T A. Low-frequency dielectric response in PMN-type ceramics[J], Ferroelectrics, 1987, 76: 377–382.

[13] PENG Z.H., CHEN Q, LIU D, et al. Evolution of microstructure and dielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9 Aurivillius type ceramics[J], Curr Appl Phys, 2013, (13) 1183-1187.

[14] RAO K S, PRASAD D M, KRISHNA P M, et al. Frequency and temperature dependence of electrical properties of barium and gadolinium substituted SrBi2Nb2O9 ceramics[J], J Mater Sci, 2007, 42:7363.

[15] KAJEWSKI D., UJMA Z.. Electrical properties of SrBi2(Nb0.5Ta0.5)2O9 ceramics[J], J Phys Chem Solids, 2010, 71: 24–29.

[16] TAWICHAI N, SUTJARITTANGTHAM K, TUNKASIRI T, et al. Dielectric dispersion and impedance spectroscopy of Bi3+-doped Ba(Ti0.9Sn0.1)O3 ceramics [J]. Ceram Int, 2013, 39: S145-S148.

[17] COONDOO I, PANWAR N, TOMAR A, et al. Impedance spectroscopy and conductivity studies in SrBi2(Ta1-xWx)2O9 ferroelectric ceramics[J]. Physica B, 2012, 407: 4712–4720.

[18] CHAUDHARI V A, BICHILE G K. Structural and impedance spectroscopic studies on PbZrxTi1−xO3 ceramics[J]. Phys B, 2010, 405: 534–539.

[19] SHANNON R D, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Cryst A, 1976, 32: 751–767.

[20] ANG C, YU Z, JING Z, et al. Piezoelectric and electrostrictive strain behavior of Ce-doped BaTiO3 ceramics[J], Appl Phys Lett, 2002, 80: 3424–3426.

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com