[1] PAZ DE ARAUJO C A, CUCHLARO J D, MCMILLAN L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes[J]. Nature,1995, 374:627-629.
[2] JIANG X P, YANG Q, CHEN C, et al. Nb-modified Bi4Ti3O12 piezoelectric for high temperature applications [J]. Inorg Mater, 2010, 25(11):1169–1174.
[3] TAO J, YI Z G, LIU Y, et al. Dielectric tunability, dielectric relaxation, and impedance spectroscopic studies on (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics[J]. J Am Ceram Soc, 2013, 96(6) 1847–1851.
[4] LIU L J, HUANG Y M, LI Y H, et al. Oxygen-vacancy-related high-temperature dielectric relaxation and electrical conduction in 0.95K0.5Na0.5NbO3–0.05BaZrO3 ceramic[J]. Phys B, 2012, 407:136–139.
[5] DASH U, SAHOO S, CHAUDHURI P, et al. Electrical properties of bulk and nano Li2TiO3 ceramics: A comparative study[J]. J Adv Ceram, 2014, 3(2):89-97.
[6] WEI X.Y., WAN X and YAO X. Dielectric relaxation in paraelectric phase of Ba(Ti,Sn)O3 ceramics[J]. J Electroceram, 2008, 21: 226–229.
[7] LI C C, WEI X Y. Complex impedance analysis on a layered perovskite-like ceramic: La3Ti2TaO11 [J] J Mater Sci, 2012, 47:4200–4204.
[8] JIANG X P, YANG F, CHEN C, et al. Microstructure and electrical properties of cerium- modified bismuth-layer 0.85Bi4Ti3O12-0.15LiNbO3 piezoelectric ceramics[J], J Chin Ceramic Soc, 2014, 42(12):1501-1506.
[9] JONSCHER A K. Low frequency dispersion in carrier-dominated dielectrics[J], Philos Mag B, 1978, 38: 587–601.
[10] JONSCHER A K, DUBE D C. Low frequency dispersion in tri-glycyne sulphate[J], Ferroelectrics, 1977,17: 533–536.
[11] ZHIGAO L, BONNET J P, RAVEZ J, et al. Correlation between low frequency dielectric dispersion (LFDD) and impedance relaxation in ferroelectric ceramic: Pb2KNb4TaO15[J], Solid State Ion, 1992, 57: 235–244.
[12] NEALON T A. Low-frequency dielectric response in PMN-type ceramics[J], Ferroelectrics, 1987, 76: 377–382.
[13] PENG Z.H., CHEN Q, LIU D, et al. Evolution of microstructure and dielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9 Aurivillius type ceramics[J], Curr Appl Phys, 2013, (13) 1183-1187.
[14] RAO K S, PRASAD D M, KRISHNA P M, et al. Frequency and temperature dependence of electrical properties of barium and gadolinium substituted SrBi2Nb2O9 ceramics[J], J Mater Sci, 2007, 42:7363.
[15] KAJEWSKI D., UJMA Z.. Electrical properties of SrBi2(Nb0.5Ta0.5)2O9 ceramics[J], J Phys Chem Solids, 2010, 71: 24–29.
[16] TAWICHAI N, SUTJARITTANGTHAM K, TUNKASIRI T, et al. Dielectric dispersion and impedance spectroscopy of Bi3+-doped Ba(Ti0.9Sn0.1)O3 ceramics [J]. Ceram Int, 2013, 39: S145-S148.
[17] COONDOO I, PANWAR N, TOMAR A, et al. Impedance spectroscopy and conductivity studies in SrBi2(Ta1-xWx)2O9 ferroelectric ceramics[J]. Physica B, 2012, 407: 4712–4720.
[18] CHAUDHARI V A, BICHILE G K. Structural and impedance spectroscopic studies on PbZrxTi1−xO3 ceramics[J]. Phys B, 2010, 405: 534–539.
[19] SHANNON R D, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Cryst A, 1976, 32: 751–767.
[20] ANG C, YU Z, JING Z, et al. Piezoelectric and electrostrictive strain behavior of Ce-doped BaTiO3 ceramics[J], Appl Phys Lett, 2002, 80: 3424–3426.
|