MELDRUM A HAGLUNDR F J, BOATNER L A, et al. Nanocomposite materials formed by ion 1mplantat1on[J]. Adv Mater, 2001, 13(19): 1431-1444. MATTEI G. Alloy nanoclusters in dielectric matrix[J]. Nucl Instrum Methods Phys Res Sect B, 2002, 191(1/4): 323-332. PENA O, PAL U, RODRIGUEZ-FERNANDEZ L, et al. Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation[J]. J Phys Chem C, 2009, 113(6): 2296-2300. HAUG J, KRUTH H, DUBIEL M, et al. ASAXS study on the formation of core-shell Ag/Au nanoparticles in glass [J]. Nanotechnology, 2009, 20(50): 505705. REN F, JIANG C Z, ZHANG L, et al. Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation [J]. Micron, 2004, 35(6): 489-493. JIA G Y, XU R, LIU C L. Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution [J]. ACS Appl Mater Interfaces, 2013, 5(24): 13055-13062. KARAHAN i H, OZDEMIR R. Effect of Cu concentration on the formation of Cu1-xZnx shape memory alloy thin films[J]. Appl Surf Sci, 2014, 318: 100-104. SCHUTTE K, MEYER H, GEMEL C, et al. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis[J]. Nanoscale, 2014, 6: 3116-3126. 许蓉,贾光一,刘昌龙.Cu,Zn离子注入SiO2纳米颗粒合成及氧气 氛围下的热稳定性研宄[J].物理学报,2014,63(7):078501. XU R, JIA G Y, LIU C L. Acta Phys Sin(in Chinese), 2014, 63(7): 078501. YESHCHENKO O A, DMITRUK I M, ALEXEENKO A A, et al. Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix [J]. Phys Rev B, 2007, 75: 085434. AMEKURA H, UMEDA N, SAKUMA Y, et al. Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence [J]. Appl Phys Lett, 2006, 88: 153119. WANG Y H, LIH Q, LU J D, et al. Optical limiting properties of Ag-Cu metal alloy nanoparticles analysis by using MATLAB[J]. Chin Phys Lett, 2011,28(11): 116101. HUME-ROTHERY W, MABBOTT G W, EVANS KMC. The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups[J]. Phil Trans R Soc, 1934, 233: 1-97. PICKERING H W, WAGNER C. Electrolytic dissolution of binary alloys containing a noble metal[J]. J Electrochem Soc, 1967, 114(7): 698-706. YAZAWA A, GUBCOVA A. Thermodynamic studies of liquid Au-Zn and Ag-Zn systems[J]. Trans JIM, 1970, 11(6): 419-423. STEPANOV A L. Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review[J]. Rev Adv Mater Sci, 2010, 26: 1-29. YESHCHENKO O A, DMITRUK I M, ALEXEENKO A A, et al. Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix [J]. Phys Rev B, 2007, 75: 085434. UWE K, MICHAEL V. Theoretical considerations [J]. Springer Ser Mater Sci, 1995, 25: 13-201. SHEIK-BAHAE M, SAID A A, WEI T H, et al. Sensitive measurement of optical nonlinearities using a single beam[J]. J Quant Electron, 1990, 26(4): 760-769. STEPANOV A L. Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: A review [J]. Rev Adv Mater Sci, 2011, 27: 115-145. SANCHEZ-DENA O, MOTA-SANTIAGO P, TAMAYO-RIVERA L, et al. Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire [J]. Opt Mater Express, 2014, 4: 92-100. PHILIP R, RAVINDRA K G, SANDHYARANI N. Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters[J]. Phys Rev B, 2000, 62: 13160-13166. bystolic copay card bystolic coupon voucher cialis discount coupons go cialis 2015 coupon
|