首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Cu和Zn离子注入Si〇2中形成Cu-Zn合金纳米颗粒及其光学性能
作者:任兵\刘昌龙12 
单位:1.天津大学理学院 天津300072  2.天津市低维功能材料物理与制备技术重点实验室 天津300072 
关键词:离子注入 铜-锌合金纳米颗粒 热稳定性 三阶非线性光学性质 中图 
分类号:O488
出版年,卷(期):页码:2016,44(1):0-0
DOI:
摘要:

 100 keV剂量为x 1016/cm2Cu离子和65 keV剂量为x 1016/cm2Zn离子单独或顺次注入到无定形Si中,并在氮气中热处理,研宄了 Cu-Zn合金纳米颗粒(NPs)的合成、热演变及其光学性质。结果表明:通过离子注入法将顺 次注入CuZn离子的样品在注入态形成了 Cu-Zn合金NPs并在520nm附近产生了表面等离子共振(SPR)吸收峰。热处理 后,合金的SPR吸收峰增强并蓝移;直至800蚓时,Cu-Zn合金才分解。Cu-Zn合金NPs能够在700蚓稳定存在,同时具有 很好的三阶非线性光学性质。

printable coupons for cialis drug discount coupons coupon for free cialis
cialis discount coupons coupons for cialis 2016 cialis 2015 coupon

 Amorphous Sio2 slices were sequentially implanted with 100 keV Cu ions at fluence of 5.0 x 1016ions/cm2 and 65 keVZn ions at fluence of 5.0 x 1016 ions/cm2, and were subsequently subjected to thermal annealing in nitrogen atmosphere at different temperatures. The synthesis, thermal stability and optical properties of Cu-Zn alloy nanoparticles (NPs) were investigated. The Cu-Zn alloy NPs were synthesized via the dual ion implantation of Cu and Zn ions causing a unique surface plasmon resonance(SPR) absorption peak at 520 nm. The SPR absorption peak is increased and shifted toward the short wavelengths after subsequent annealing. The Cu-Zn alloy NPs are decomposed after thermal annealing at 800 C. The sample has a superior third-order nonlinear optical property after thermal annealing at 700 C .

printable coupons for cialis drug discount coupons coupon for free cialis
amoxicillin amoxicillin amoxicillin
基金项目:
作者简介:
sumatriptan side effects sumatriptan side effects sumatriptan side effects
参考文献:

  MELDRUM A HAGLUNDR F J, BOATNER L A, et al. Nanocomposite materials formed by ion 1mplantat1on[J]. Adv Mater, 2001, 13(19): 1431-1444. MATTEI G. Alloy nanoclusters in dielectric matrix[J]. Nucl Instrum Methods Phys Res Sect B, 2002, 191(1/4): 323-332. PENA O, PAL U, RODRIGUEZ-FERNANDEZ L, et al. Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation[J]. J Phys Chem C, 2009, 113(6): 2296-2300. HAUG J, KRUTH H, DUBIEL M, et al. ASAXS study on the formation of core-shell Ag/Au nanoparticles in glass [J]. Nanotechnology, 2009, 20(50): 505705. REN F, JIANG C Z, ZHANG L, et al. Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation [J]. Micron, 2004, 35(6): 489-493. JIA G Y, XU R, LIU C L. Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution [J]. ACS Appl Mater Interfaces, 2013, 5(24): 13055-13062. KARAHAN i H, OZDEMIR R. Effect of Cu concentration on the formation of Cu1-xZnx shape memory alloy thin films[J]. Appl Surf Sci, 2014, 318: 100-104. SCHUTTE K, MEYER H, GEMEL C, et al. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis[J]. Nanoscale, 2014, 6: 3116-3126.  许蓉,贾光一,刘昌龙.Cu,Zn离子注入SiO2纳米颗粒合成及氧气 氛围下的热稳定性研宄[J].物理学报,2014,63(7):078501. XU R, JIA G Y, LIU C L. Acta Phys Sin(in Chinese), 2014, 63(7): 078501. YESHCHENKO O A, DMITRUK I M, ALEXEENKO A A, et al. Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix [J]. Phys Rev B, 2007, 75: 085434. AMEKURA H, UMEDA N, SAKUMA Y, et al. Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence [J]. Appl Phys Lett, 2006, 88: 153119. WANG Y H, LIH Q, LU J D, et al. Optical limiting properties of Ag-Cu metal alloy nanoparticles analysis by using MATLAB[J]. Chin Phys Lett, 2011,28(11): 116101. HUME-ROTHERY W, MABBOTT G W, EVANS KMC. The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups[J]. Phil Trans R Soc, 1934, 233: 1-97. PICKERING H W, WAGNER C. Electrolytic dissolution of binary alloys containing a noble metal[J]. J Electrochem Soc, 1967, 114(7): 698-706. YAZAWA A, GUBCOVA A. Thermodynamic studies of liquid Au-Zn and Ag-Zn systems[J]. Trans JIM, 1970, 11(6): 419-423. STEPANOV A L. Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review[J]. Rev Adv Mater Sci, 2010, 26: 1-29. YESHCHENKO O A, DMITRUK I M, ALEXEENKO A A, et al. Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix [J]. Phys Rev B, 2007, 75: 085434. UWE K, MICHAEL V. Theoretical considerations [J]. Springer Ser Mater Sci, 1995, 25: 13-201. SHEIK-BAHAE M, SAID A A, WEI T H, et al. Sensitive measurement of optical nonlinearities using a single beam[J]. J Quant Electron, 1990, 26(4): 760-769. STEPANOV A L. Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: A review [J]. Rev Adv Mater Sci, 2011, 27: 115-145. SANCHEZ-DENA O, MOTA-SANTIAGO P, TAMAYO-RIVERA L, et al. Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire [J]. Opt Mater Express, 2014, 4: 92-100. PHILIP R, RAVINDRA K G, SANDHYARANI N. Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters[J]. Phys Rev B, 2000, 62: 13160-13166.

cialis coupon cialis coupon cialis coupon
bystolic copay card bystolic coupon voucher
cialis discount coupons go cialis 2015 coupon
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com