[1] 沈宗洋, 李敬锋. (Na,K)NbO3基无铅压电陶瓷的研究进展[J]. 硅酸盐学报, 2010, 38(3): 510–520.
SHEN Zongyang, Li Jingfeng. J Chin Ceram Soc. 2010, 38(3): 510–520.
[2] SAITO Y, TAKAO H, High performance lead-free piezoelectric ceramics in (K,Na)NbO3–LiTaO3 solid solution system[J]. Ferroelectrics, 2006, 338(1): 17–32.
[3] CHANG Yunfei, YANG Zupei, HOU Yuting, et al. Effects of Li content on the phase structure and electrical properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics[J]. J Appl Phys, 2007, 90(23): 232905–1–3.
[4] THOMAS R S, ZHANG Shujun, Lead-free piezoelectric ceramics: Alternatives for PZT?[J]. J Electroceram, 2007, 19(1): 113–126.
[5] XIAO Dingquan, WU Jiagang, WU Liang, et al. Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics[J]. J Mater Sci, 2009, 44(19): 5408–5419.
[6] LI Yueming, SHEN Zongyang, JIANG Liang, et al. Microstructure, phase transition, and electrical properties of KxNa1–xNbO3 lead-free piezoceramics[J]. J Electron Mater, 2012, 41(3): 546–551.
[7] 李月明, 吴芬, 潘铁政, 等. Li含量对KNNLTSBZ无铅压电陶瓷性能的影响[J]. 硅酸盐学报, 2014, 42(1): 1–5.
LI Yueming, WU Fen, PAN Tiezheng, et al. J Chin Ceram Soc,2014, 42(1): 1–5.
[8] 张利民, 张波萍, 李敬锋, 等. Ag掺杂Na0.5K0.5NbO3无铅压电陶瓷的无压烧结及性能研究[J]. 稀有金属材料与工程, 2007, 36(z1): 509–512.
ZHANG Limin, ZHANG Boping, LI Jingfeng, et al. Rare Met Mater Eng (in Chinese), 2007, 36(z1): 509–512.
[9] WANG Xiaopeng, WU Jiagang, XIAO Dingquan, et al. Large d33 in (K,Na)(Nb,Ta,Sb)O3–(Bi,Na,K)ZrO3 lead-free ceramics[J]. J Mater Chem A, 2014, 2(12): 4122–4126.
[10] HOLLENSTEIN E, DAVIS M, DAMJANOVC D, et al. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics [J]. J Appl Phys, 2005, 87(18): 182905–182907.
[11] ZUO Ruzhong, FANG Xusheng, YE Chun, et al. Phase structure and electrical properties of new lead–free (K0.5Na0.5)NbO3–Bi0.5Na0.5TiO3 ceramics[J]. J Appl Phys, 2007, 90(9): 092904(1–3).
[12] WANG Zhuo, XIAO Dingquan, WU Jiagang, et al. New lead-free (1–x)(K0.5Na0.5)NbO3–xBi0.5Na0.5ZrO3 ceramics with high piezoelectricity[J]. J Am Ceram Soc, 2014, 97(3): 688–690.
[13] 江民红, 陈何欣, 刘心宇, 等. BiFeO3–K0.5Na0.5NbO3无铅压电陶瓷的烧结工艺[J]. 硅酸盐学报, 2010, 38(3): 363–368.
JIANG Minhong, CHEN Hexin, Liu Xinyu, et al. J Chin Ceram Soc, 2010, 38(3): 363–368.
[14] 沈万程, 沈宗洋, 李月明, 等. (1–x)(K0.49Na0.51)(Nb0.97Ta0.03)O3– xBi0.5Na0.5ZrO3无铅压电陶瓷的结构与电性能研究[J]. 人工晶体学报, 2015, 44(10): 2793–2797.
SHEN Wancheng, SHEN Zongyang, LI Yueming, et al. J Synth cryst (in Chinese), 2015, 44(10): 2793–2797.
[15] 张福学, 王丽坤. 现代压电学(中册)[M]. 北京: 科学出版社, 2002: 92.
[16] WESTPHAL V, KLEEMANN W, GLINCHUK M D. Diffuse phase transitions and random-field-induced domain states of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3[J]. Phy Rev Lett, 1992, 68(6): 847–850.
[17] 宋学平, 张永光, 罗晓婧, 等. (1–x)(K0.5Na0.5)NbO3–xSrTiO3陶瓷的弛豫铁电性能[J]. 物理学报, 2009, 58(7): 4980–4986.
SONG Xueping, ZHANG Yongguang, LUO Xiaojing, et al. Acta Phys Sin(in Chinese), 2009, 58(7): 4980–4986.
[18] HAO Jigong, XU Zhijun, CHU Ruiqing, et al. Relaxor behavior and dielectric properties of (La,Ta)-modified (K0.5Na0.5)NbO3 lead-free ceramics[J]. J Alloy Compd, 2009, 467(1): 233–238.
[19] WU Wenjuan, XIAO Dingquan, WU Jiagang, et al. Microstructure and electrical properties of relaxor (1–x)[(K0.5Na0.5)0.95Li0.05](Nb0.95Sb0.05)O3–xBaTiO3 piezoelectric ceramic[J]. Ceram Int, 2012, 38(2): 2277–2282.
[20] RAY Geeta, SINHA Nidhi, BHANDARI Sonia, et al. Achieving high piezoelectricity and fatigue free hysteresis in lead free relaxor ferroelectric ceramic 0.94[Na0.5K0.5NbO3]–0.06LiSbO3[J]. Mater Chem Phys, 2015, 159:107–113.
[21] SUN Xiaojun, DENG Jianming, LIU Laijun, et al. Dielectric properties of BiAlO3-modified (Na,K,Li)NbO3 lead-free ceramics[J]. Mater Res Bull, 2016, 73:437–445.
[22] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallogr A, 1976, 32: 751–767.
[23] SHEN Zongyang, LI Yueming, JIANG Liang, et al. Phase transition and electrical properties of LiNbO3-modified K0.49Na0.51NbO3 lead-free piezoceramics[J]. J Mater Sci: Mater Electron, 2011, 22(8): 1071–1075.
[24] GUO Yiping, KAKIMOTO Kenichi, OHSATO Hitoshi. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics[J]. Appl Phys Lett, 2004, 85(18): 4121–4123.
[25] UCHINO K, NOMURA S. Critical exponents of the dielectric constants in diffused-phase-transition crystals[J]. Ferroelectrics, 1982, 44(1): 55–61.
[26] CAO Wenwu, RANDALL Clive A. Grain size and domain size relations in bulk ceramic materials[J]. J Phys Chem Solids, 1996, 57(10): 1499–1505.
[27] SHARMA D K, KUMAR N, SHARMA S, et al. Effect of BaTiO3 additive on the electrical properties of Na0.5Bi0.5TiO3 lead free ceramics[J]. Mater Chem Phys, 2013, 141 (1): 145–152.
[28] ZHENG Shaoying, SHI Danping, LIU Laijun, et al. Oxygen vacancy-related dielectric relaxation and electrical conductivity in La-doped Ba(Zr0.9Ti0.1)O3 ceramics[J]. J Mater Sci: Mater Electron, 2014, 25(9): 4058–4065.
[29] LI Chunchun, WEI Xiaoyong. Complex impedance analysis on a layered perovskite-like ceramic:La3Ti2TaO11[J]. J Mater Sci, 2012, 47(9): 4200–4204.
[30] ZHANG Lei, TANG Zhongjia. Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12[J]. Phys Rev B, 2004, 70(17): 174306.1–174306.6.
[31] LIU Laijun, WU Meixia, HUANG Yanmin, et al. Frequency and temperature dependent dielectric and conductivity behavior of 0.95(K0.5Na0.5)NbO3–0.05BaTiO3 ceramic[J]. Mater Chem Phys, 2011, 126(3): 769–772.
|