首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
高温作用下牺牲混凝土的损伤演化
作者:褚洪岩1 2  伟1 2 蒋金洋1 2 
单位:1. 东南大学材料科学与工程学院 南京 211189 2. 江苏省土木工程材料重点实验室 南京 211189 
关键词:牺牲混凝土 高温 聚丙烯纤维 超声波 损伤演化 
分类号:TU528.59
出版年,卷(期):页码:2016,44(2):211-217
DOI:10.14062/j.issn.0454-5648.2016.02.05
摘要:


?以掺加/不掺加聚丙烯纤维的核电牺牲混凝土为对象,研究了不同温度作用下牺牲混凝土的力学性能和损伤演化规律。采用超声波检测技术,得到不同温度作用下牺牲混凝土试件中的超声波波速。根据损伤定义和应力波理论,得到牺牲混凝土损伤与其超声波波速之间的关系,最终建立了不同温度作用下牺牲混凝土的损伤演化模型。结果表明:在25~400 ℃时,不掺加聚丙烯纤维的牺牲混凝土试件的残余抗压强度均高于掺加纤维的试件的残余抗压强度,600~1 000 ℃时则呈现相反趋势;高温作用下,聚丙烯纤维的掺加对在牺牲混凝土中传播的超声波波速具有双重效应——正效应和负效应,在200~1 000 ℃时,负效应起主导作用;掺加/不掺加聚丙烯纤维的牺牲混凝土的损伤随温度演化结果一致,在高温作用下牺牲混凝土损伤随温度演化符合Weibull分布,该损伤演化模型可以用于高温作用下牺牲混凝土损伤分析以及核灾难后评估鉴定。

abortion las vegas period after abortion abortion pictures
cialis coupon cialis coupon cialis coupon
sumatriptan side effects sumatriptan side effects sumatriptan side effects

 The mechanical properties and damage evolution of sacrificial concrete with and without polypropylene (PP) fibers after heating at various elevated temperatures were investigated. The variations of ultrasonic wave velocity for sacrificial concrete subjected to different elevated temperatures were obtained by ultrasonic testing technique. According to the definition of the damage and stress wave theory, the relationship between the damage evolution in sacrificial concrete and variation of ultrasonic wave velocity was obtained, eventually establishing the damage evolution model of sacrificial concrete. The results indicate that the residual compressive strengths of sacrificial concrete without fibers are greater than those of sacrificial concrete with fibers at 25–400 ℃,and the contrary tendency appears at 600-1 000 ℃. The addition of PP fibers has both positive and negative effects on the velocity of ultrasonic wave propagation in sacrificial concrete. Furthermore, the negative effect played a leading role in the range of 200–      1 000 ℃. There are consistent results of damage evolution of sacrificial concrete with and without PP fibers subjected to high temperatures. In addition, the Weibull distribution model was proposed to analyze the damage of sacrificial concrete and nuclear disaster assessment.

基金项目:
国家自然科学基金项目(51378114);江苏省重点科技成果转化专项项目(85120000220)。
作者简介:
褚洪岩(1987—),男,博士研究生。
参考文献:

 [1] KONINGS R J M, ALLEN T R, STOLLER R E, et al. Comprehensive Nuclear Materials [M]. Amsterdam: Elsevier Science, 2012: 8–20.

[2] BAZANT Z P, KAPLAN M F. Concrete at High Temperatures: Materials Properties and Mathematical Models [M]. London: Longman Group Limited, 1996: 307–354.
[3] 王海龙, 俞秋佳, 孙晓燕, 等. 高温作用后混凝土损伤与耐久性能评价[J]. 江苏大学学报: 自然科学版, 2014, 35(2): 238–242.
WANG Hailong, YU Qiujia, SUN Xiaoyan, et al. J Jiangsu Univ: Nat Sci Ed (in Chinese), 2014, 35(2): 238–242.
[4] POON C S, SHUI Z H, LAM L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures [J]. Cem Concr Res, 2004, 34: 2215–2222.
[5] PENG Gaifei, YANG Wenwu, ZHAO Jie, et al. Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures [J]. Cem Concr Res, 2006, 36: 723–727.
[6] BEHNOOD A, GHANDEHARI M. Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures [J]. Fire Saf J, 2009, 44: 1015–1022.
[7] 董香军. 纤维高性能混凝土高温、明火力学与爆裂性能研究 [D]. 大连: 大连理工大学, 2006.
DONG Xiangjun. Research on mechanical properties and spalling behaviours of FRHPC subjected to high temperature and fire (in Chinese, dissertation). Dalian: Dalian University of Technology, 2006.
[8] 高丹盈, 赵亮平, 杨淑慧. 纤维矿渣微粉混凝土高温中的劈拉性能[J]. 硅酸盐学报, 2012, 40(5): 677–684.
GAO Danying, ZHAO Liangping, YANG Shuhui. J Chin Ceram Soc, 2012, 40(5): 677–684.
[9] 牛旭婧, 赵庆新, 陈天红. 聚丙烯粗纤维对高强混凝土高温后性能影响[J]. 硅酸盐学报, 2013, 32(12): 2583–2588.
NIU Xuqing, ZHAO Qingxin, CHEN Tianhong. J Chin Ceram Soc, 2013, 32(12): 2583–2588.
[10] KODUR V K R, CHENG F P, WANG T C, et al. Effect of strength and fiber reinforcement on fire resistance of high-strength concrete columns[J]. J Struct Eng-ASCE, 2003, 129(2): 253–259.
[11] XIAO J, FALKNER H. On residual strength of high-strength concrete with and without polypropylene fibers at elevated temperatures [J]. Fire Saf J, 2006, 41(2): 115–121.
[12] MEYERS M A. Dynamic Behavior of Materials [M]. New York: Wiley-Interscience, 1994: 152–176.
[13] SONG Hui, CHEN Jiankang. Effect of damage evolution on Poisson’s ratio of concrete under sulfate attack [J]. Acta Mech Solida Sin, 2011, 24: 209–215.
[14] 中国工程建设标准化协会. CECS02-88 超声回弹综合法检测混凝土强度技术规程[S]. 北京: 中国建筑工业出版社, 2005.
China Association for Engineering Construction Standardization. Beijing: China Architecture & Building Press (in Chinese), 2005.
[15] JU Liyuan, ZHANG Xiong. Effects of hybrid fiber on high performance concrete properties under high temperature [J]. J Tongji Univ: Nat Sci Ed, 2006, 34: 89–92.
[16] 高超, 杨鼎宜, 俞君宝, 等. 纤维混凝土高温后力学性能的研究 [J]. 混凝土, 2013(1): 33–36.
GAO Chao, YANG Dingyi, YU Junbao, et al. Concrete (in Chinese), 2013(1): 33–36.
[17] CHASE M W. NIST-JANAF Thermochemical Tables [M]. The United States of America: American Institute of Physics, 1998: 49–61.
[18] HEAP M J, LAVALLEE Y, LAUMANN A, et al. The influence of thermal-stressing (up to 1 000 ℃) on the physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete [J]. Construct Build Mater 2013, 42: 248–265.
[19] PELED A, GUTTMAN H, BENTUR A. Treatments of polypropylene fibres to optimize their reinforcing efficiency in cement composites [J]. Cem Concr Compos, 1992, 14(4): 277–285.
[20] 燕兰, 邢永明, 郝贠洪.混杂纤维增强高性能混凝土(HFHPC)高温力学性能及微观分析[J]. 混凝土, 2012(1): 24–28.
YAN Lan, XING Yongming, HAO Yuanhong. Concrete (in Chinese), 2012(1): 24–28.
amoxicillin amoxicillin amoxicillin
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com