[1] KONINGS R J M, ALLEN T R, STOLLER R E, et al. Comprehensive Nuclear Materials [M]. Amsterdam: Elsevier Science, 2012: 8–20.
[2] BAZANT Z P, KAPLAN M F. Concrete at High Temperatures: Materials Properties and Mathematical Models [M]. London: Longman Group Limited, 1996: 307–354.
[3] 王海龙, 俞秋佳, 孙晓燕, 等. 高温作用后混凝土损伤与耐久性能评价[J]. 江苏大学学报: 自然科学版, 2014, 35(2): 238–242.
WANG Hailong, YU Qiujia, SUN Xiaoyan, et al. J Jiangsu Univ: Nat Sci Ed (in Chinese), 2014, 35(2): 238–242.
[4] POON C S, SHUI Z H, LAM L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures [J]. Cem Concr Res, 2004, 34: 2215–2222.
[5] PENG Gaifei, YANG Wenwu, ZHAO Jie, et al. Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures [J]. Cem Concr Res, 2006, 36: 723–727.
[6] BEHNOOD A, GHANDEHARI M. Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures [J]. Fire Saf J, 2009, 44: 1015–1022.
[7] 董香军. 纤维高性能混凝土高温、明火力学与爆裂性能研究 [D]. 大连: 大连理工大学, 2006.
DONG Xiangjun. Research on mechanical properties and spalling behaviours of FRHPC subjected to high temperature and fire (in Chinese, dissertation). Dalian: Dalian University of Technology, 2006.
[8] 高丹盈, 赵亮平, 杨淑慧. 纤维矿渣微粉混凝土高温中的劈拉性能[J]. 硅酸盐学报, 2012, 40(5): 677–684.
GAO Danying, ZHAO Liangping, YANG Shuhui. J Chin Ceram Soc, 2012, 40(5): 677–684.
[9] 牛旭婧, 赵庆新, 陈天红. 聚丙烯粗纤维对高强混凝土高温后性能影响[J]. 硅酸盐学报, 2013, 32(12): 2583–2588.
NIU Xuqing, ZHAO Qingxin, CHEN Tianhong. J Chin Ceram Soc, 2013, 32(12): 2583–2588.
[10] KODUR V K R, CHENG F P, WANG T C, et al. Effect of strength and fiber reinforcement on fire resistance of high-strength concrete columns[J]. J Struct Eng-ASCE, 2003, 129(2): 253–259.
[11] XIAO J, FALKNER H. On residual strength of high-strength concrete with and without polypropylene fibers at elevated temperatures [J]. Fire Saf J, 2006, 41(2): 115–121.
[12] MEYERS M A. Dynamic Behavior of Materials [M]. New York: Wiley-Interscience, 1994: 152–176.
[13] SONG Hui, CHEN Jiankang. Effect of damage evolution on Poisson’s ratio of concrete under sulfate attack [J]. Acta Mech Solida Sin, 2011, 24: 209–215.
[14] 中国工程建设标准化协会. CECS02-88 超声回弹综合法检测混凝土强度技术规程[S]. 北京: 中国建筑工业出版社, 2005.
China Association for Engineering Construction Standardization. Beijing: China Architecture & Building Press (in Chinese), 2005.
[15] JU Liyuan, ZHANG Xiong. Effects of hybrid fiber on high performance concrete properties under high temperature [J]. J Tongji Univ: Nat Sci Ed, 2006, 34: 89–92.
[16] 高超, 杨鼎宜, 俞君宝, 等. 纤维混凝土高温后力学性能的研究 [J]. 混凝土, 2013(1): 33–36.
GAO Chao, YANG Dingyi, YU Junbao, et al. Concrete (in Chinese), 2013(1): 33–36.
[17] CHASE M W. NIST-JANAF Thermochemical Tables [M]. The United States of America: American Institute of Physics, 1998: 49–61.
[18] HEAP M J, LAVALLEE Y, LAUMANN A, et al. The influence of thermal-stressing (up to 1 000 ℃) on the physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete [J]. Construct Build Mater 2013, 42: 248–265.
[19] PELED A, GUTTMAN H, BENTUR A. Treatments of polypropylene fibres to optimize their reinforcing efficiency in cement composites [J]. Cem Concr Compos, 1992, 14(4): 277–285.
[20] 燕兰, 邢永明, 郝贠洪.混杂纤维增强高性能混凝土(HFHPC)高温力学性能及微观分析[J]. 混凝土, 2012(1): 24–28.
YAN Lan, XING Yongming, HAO Yuanhong. Concrete (in Chinese), 2012(1): 24–28.
|