首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
迁移性阻锈剂的优化及渗透阻锈性能
作者:刘志勇 王子潇 宋宁 
单位:烟台大学土木工程学院 山东 烟台 264005 
关键词:迁移性阻锈剂 阻锈性能 传输性能 机理 
分类号:TU5
出版年,卷(期):页码:2016,44(3):481-486
DOI:10.14062/j.issn.0454-5648.2016.03.22
摘要:

?研究了迁移性阻锈剂(MCI)在氯盐溶液中的阻锈效果和在混凝土中的传输阻锈性能,基于阻锈效果和传输性能对MCI组成进行优化。结果表明:优化后的MCI (PCI-2015)在1%(质量分数)氯盐溶液中添加2% PCI-2015 1 d后,可使钢筋腐蚀电流密度(Icorr)降低到0.02 μA/cm2以下,并维持至28 d以上;其在立方体试件中渗透5 d的质量吸收率是优化前的6.78倍,在棱柱体试件中渗透5 d时,在70 mm高度处的氮含量为702 mg/kg;在含氯盐混凝土中渗透12 h后,可使钢筋Icorr降低到       0.1 μA/cm2以下。表明PCI-2015在混凝土中具有优异的传输阻锈性能。采用原子力显微镜和X光电子能谱研究了在氯盐溶液中添加PCI-2015后碳钢的微观形貌及表面元素,MCI分子可排除碳钢表面的氯离子,从而有效抑制碳钢锈蚀或使锈蚀碳钢修复。

 
cialis discount coupons coupons for cialis 2016 cialis 2015 coupon

 The anti-corrosion effect of MCI in NaCl solution and the transmission efficiency of MCI in concrete were investigated. The composition of MCI was optimized based on these performances. The results show that when the optimized MCI (PCI-2015) of 2% (in mass fraction) in 1%NaCl solution is added for 1 d, the corrosion current density (Icorr) of corroded steel bar can be reduced to less than 0.02 μA/cm2, and Icorr can be below 0.02 μA/cm2 at least 28 d. The Icorr of steel bar in chloride contaminated concrete absorbed PCI-2015 for 12 h can be decreased to less than 0.1 μA/cm2. The absorbed mass of PCI-2015 is 6.78 times of the PCI-2010 in cubic concrete specimen, and the detected nitrogen content is 702 mg/kg at the depth of 70 mm in prism specimen in 5 d. The microscopic morphology and surface elements for mild steel immersed in 1%NaCl solution with 2% PCI-2015 were determined by atomic force microscopy and X-ray photoelectron spectroscopy. The results indicate the molecules of PCI-2015 could displace chloride ions, thus inhibiting the steel corrosion or making corroded carbon steel repaired.

abortion las vegas abortion clinics in the bronx abortion pictures
amoxicillin amoxicillin amoxicillin
基金项目:
国家自然科学基金(51278443);烟台大学研究生创新基金(01075)资助。
作者简介:
刘志勇(1966—),男,博士,教授。
参考文献:

 [1] LEE H S, RYU H S, PARK W J, et al. Comparative study on corrosion protection of reinforcing steel by using amino alcohol and lithium nitrite inhibitors[J]. Mater, 2015, 8(1): 251–269.

[2] BHUVANESHWARI B, SELVARAJ A, IYER N R, et al. Electrochemical investigations on the performance of newly synthesized azomethine polyester on rebar corrosion [J]. Mater Corro, 2015, 66(4): 387–395.
[3] 徐永模. 迁移性阻锈剂——钢筋混凝土阻锈剂的新发展[J].硅酸盐学报, 2002, 30(1): 91–101. 
XU Yongmo. J Chin Ceram Soc, 2002, 30(1): 91–101. 
[4] 刘志勇, 缪昌文, 周伟玲,等. 迁移性阻锈剂及其在混凝土中耐久性保持和提升中的作用[J]. 硅酸盐学报, 2008, 36(10): 1494–1500.
LIU Zhiyong, MIAO Changwen, ZHOU Weiling, et al. J Chin Ceram Soc, 2008, 36(10): 1494–1500.
[5] LEVASY T A, MANICALLY C, RICHARDSON M G. The effect of a new generation surface-applied organic inhibitor on concrete properties[J]. Cem Concr Compos, 2007, 29(5):357–364.
[6] JAMIL H E, MONTEMOR M F, BOUULIF R, et al. An electrochemieal and analytical approach to the inhibition mechanism of an amino-alcohol-based corrosion inhibitor for reinforced concrete [J]. Electrochim Acta, 2003, 48(23): 3509–3518.
[7] RAKANTA E, ZAFEIROPOULOU T, BATIS G. Corrosion protection of steel with DMEA-based organic inhibitor [J]. Constr Build Mater, 2013, 44, 507–513.
[8] 缪昌文, 周伟玲, 陈翠翠. 模拟混凝土孔溶液中有机阻锈剂对钢筋的保护作用[J]. 东南大学学报: 自然科学版, 2010, 40(S2): 187–191.
MIAO Changwen, ZHOU Weiling, CHEN Cuicui. J Southeast Univ:Nat Sci Ed(in Chinese), 2010, 40(S2): 187–191.
[9] 陈翠翠, 周伟玲, 刘加平. 新型有机阻锈剂对钢筋的阻锈作用[J]. 建筑材料学报, 2011, 14(1): 136–139.
CHEN Cuicui, ZHOU Weiling, LIU Jiaping. J Build Mater (in Chinese), 2011, 14(1): 136–139.
[10] 吴欢, 高立新, 张大全. 模拟混凝土孔隙液中N,N–二甲基乙醇胺的阻锈作用[J]. 腐蚀与防护, 2011, 32(9): 681–683.
WU Huan, GAO Lixin, ZHANG Daquan. Corr Prot (in Chinese), 2011, 32(9): 681–683.
[11] YU L, LIU Z Y, YANG W B, WANG Z X. Adsorption and characterization of an organic corrosion inhibitor for inhibiting carbon steel corrosion in chloride solution[J]. Curr Anal Chem, 2015, 11(4): 1–6.
[12] LIU Z Y, YU L, LI Q Z. Synergic mechanism of an organic corrosion inhibitor for preventing carbon steel corrosion in chloride solution [J]. J Wuhan Univ Technol Mater Sci, 2015, 30(2): 325–330.
[13] 于蕾, 刘志勇, 左晓宝, 迁移性阻锈剂在混凝土中的传输模型[J]. 硅酸盐学报, 2014, 42(11): 1370–1376.
YU Lei, LIU Zhiyong, ZUO Xiaobao. J Chin Ceram Soc, 2014, 42(11): 1370–1376.
[14] LIU Z Y, YU L, WANG Z X, YANG W B. Modeling and experimental validation of MCI transport involving pore-blocking effect in cement-based materials[J]. J Mater Civil Eng, 2015, http://dx.doi.org/ 10.1061/(ASCE)MT.1943–5533.0001455.
[15] 杨维斌, 于蕾, 刘志勇, 等. 迁移性阻锈剂影响钢筋锈蚀速率的量化模型及应用[J]. 硅酸盐学报, 2015, 43(6): 839–844.
YANG Weibin, YU Lei, LIU Zhiyong. J Chin Ceram Soc, 2015, 43(6): 839–844.
[16] BROMFIELD J P. Corrosion of steel in concrete understanding, investigationg and repair[J]. 2 Ed, London: Taylor & Francis Group, 2007: 70–82.
[17] American Society for Testing Materials. ASTM C1585–13. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes[S]. West Conshohocken: ASTM International, 2013.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com