首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
通过观测硬化水泥浆体的细观孔隙结构预测其宏观力学性能
作者:阚晋 彭兴黔 
单位:华侨大学土木工程学院 福建 厦门 361021 
关键词:硬化水泥浆体 Micro-CT 细观断裂模型 应力应变关系 极限拉伸强度 
分类号:TU501
出版年,卷(期):页码:2016,44(5):1-5
DOI:10.14062/j.issn.0454-5648.2016.05.08
摘要:

首先通过高分辨Micro-CT系统观测水灰比为0.5的水泥浆体内部微米级孔隙并对其尺寸进行统计分析,获得水泥浆体内部孔隙结构特征和两大类微米级孔隙的直径分布。然后引入孔隙介质细观断裂模型,将观测获得的孔隙特征作为模型参数,对水泥浆体的宏观力学性能进行计算,获得其应力–应变曲线和极限拉伸强度。最后将力学模型计算结果与实验结果进行对比分析,极限拉伸强度的计算和实验结果分别为9.47 Mpa和7.96 Mpa。研究结果表明Micro-CT系统可以准确的获取水泥浆体内部的微米级孔隙信息,孔隙结构信息引入细观断裂模型后的计算结果准确度较高。

 
doxycycline doxycycline doxycycline
cialis coupon cialis coupon cialis coupon
sumatriptan side effects sumatriptan side effects sumatriptan side effects

 Micro porous structures and macroscopic mechanical properties are investigated in this paper. The pores in cement paste with water-cement ratio of 0.5 are observed using high resolution Micro-CT system. The characteristics of micro porous structures and the distribution of two types of micron pores were investigated. Introduced pores parameters to a micro-fracture model, the mechanical properties were analyzed. The stress-strain strain relationship and ultimate strength of cement paste subjected to uniaxial tension are predicted. The predicted results are consistent with test results. Ultimate tensile strength of calculation result and experimental result are 9.47 Mpa and 7.96 Mpa respectively. Results show that Micro-CT system can be used to observe parameters of the micron pores in cement pastes accurately. The calculation results of the micro-fracture model are reliable.

 
基金项目:
国家自然科学基金(11102002,51478197);福建省自然科学基金(2015J01015),华侨大学人才启动基金(12BS212)。
作者简介:
阚 晋(1981—),男,博士,讲师。
参考文献:

 [1] KHALILI N, KHABBAZ M H, VALLIAPPAN S. An effective stress based numerical model for hydro-mechanical analysis in unsaturated porous media [J]. Comput Mech, 2000, 26(2): 174–184.

[2] RICE R W. Limitations of pore-stress concentrations on the mechanical properties of porous materials [J]. J Mater Sci, 1997, 32(17): 4731–4736.
[3] SEVOSTIANOV I, KUSHCH V. Effect of pore distribution on the statistics of peak stress and overall properties of porous material [J]. Int J Solids Struct, 2009, 46(25-26): 4419–4429.
[4] NIELSEN L F. On strength of porous material: Simple systems and densified systems [J]. Mater and Struct, 1998, 31(214): 651–661.
[5] RUBIN M B, VOROBIEV O Y, GLENN L A. Mechanical and numerical modeling of a porous elastic-viscoplastic material with tensile failure [J]. Int J Solids Struct, 2000, 37(13): 1841–1871.
[6] ULM F J, CONSTANTINIDES G, HEUKAMP F H. Is concrete a poromechanics material? - A multiscale investigation of poroelastic properties [J]. Mater Struct, 2004, 37(1): 43–58.
[7] BAUCHY M, QOMI, M J, ABDOLHOSSEINI, ULM F J. Order and disorder in calcium-silicate-hydrate [J]. J Chem Phys, 2014, 140(21): 214503.
[8] STORA E, BARY B, HE Q C, et al. Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials: Interactions between damage and leaching [J]. Cement Concrete Res, 2010, 40(8): 1226–1236.
[9] 李响, 阎培渝. 粉煤灰参量对水泥孔溶液碱度与微观结构的影响[J]. 建筑材料学报, 2010, 13(6): 787–791.
LI Xiang, YAN Peiyu. J Build Mater (in Chinese), 2010, 13(6): 787–791.
[10] 陈建康, 宋慧. 混凝土材料损伤耦合的非线性粘弹性本构关系[J]. 应用力学学报, 2011, 28(4): 407–412.
CHEN Jiankang, SONG Hui. Chin J Appl Mech (in Chinese), 2011, 28(4): 407–412.
[11] 阚晋, 王建祥. 一种孔隙介质力学模型及在水泥基材料的应用[J]. 力学学报, 2012, 44(6): 1066–1070.
KAN Jin, WANG Jianxiang. Act Mech Sin (in Chinese), 2012, 44(6): 1066–1070.
[12] NOEL M H, PAT F M, DENIS C O, et al. Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties [J]. J Biomech, 2008, 41(11): 2589–2596.
[13] ABDUL A A, SAURY C, XUAN V, et al. On the material characteri -zation of a composite using micro CT image based finite element modeling [C] // Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure V, San Diego, USA, 2006, 617605: 1–8.
[14] 桂建保, 胡战利等. 高分辨显微CT 技术进展[J]. CT 理论与应用研究, 2009, 18(2): 106–116.
GUI Jiangbao, HU Zhanli, et al. CT Theory and Applications, 2009, 18(2):106–116.
[15] 刘巧玲, 孙伟, 马正先等. 碳纳米管对硅灰/水泥砂浆力学和2D-3D微结构性能的影响[J]. 硅酸盐学报, 2014, 42(10): 1266–1273.
LIU Qiaoling, SUN Wei, MA Zhengxian, et al.J Chin Ceram Soc, 2014, 42(10): 1266–1273.
[16] 中华人民共和国国家质量监督检验检疫总局, GB 175-2007, 通用硅酸盐水泥标准[S]. 北京: 中国标准出版社, 2007.
[17] Lawn B R. Fracture of Brittle Solids. Cambridge University Press & Higher Education Press, Cambridge, 2009.
[18] 杨文萃, 葛勇, 袁杰, 张宝生. 无机盐对水泥石水化程度和孔结构的影响. 硅酸盐学报, 2009, 37(4): 622–626.
YANG Wencui, GE Yong, YUAN Jie, ZHANG baosheng. J Chin Ceram Soc, 2009, 37(4): 622–626.
[19] Termkhajornkit P, Barbarulo R, Chanvillard, G. Microstructurally- designed cement pastes: A mimic strategy to determine the relationships between microstructure and properties at any hydration degree [J]. Cem Concr Res, 2015, 71: 66–77.
[20] 王培铭, 丰曙霞, 刘贤萍. 水泥水化程度研究方法及其进展[J]. 建筑材料学报, 2005, 8(6): 646–652.
WANG Peiming, FENG Shuxia LIU Xianping. J Build Mater (in Chinese) 2005, 8(6): 646–652.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com