首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
钒氧化物纳米材料在钠离子电池中的应用
作者:魏湫龙 蒋周阳 谭双双 李启东 麦立强 
单位:武汉理工大学材料复合新技术国家重点实验室 武汉 430070 
关键词:层状结构 钒氧化物 能源存储 钠离子电池 纳米材料 正极 
分类号:TB332
出版年,卷(期):页码:2016,44(5):1-16
DOI:10.14062/j.issn.0454-5648.2016.05.12
摘要:

钠离子电池具有资源广、成本低等优势,是新一代储能技术,尤其是大规模储能的发展前沿与热点。为获得安全、高效、商业化的钠离子电池,其正极材料的开发是研究者们面临的难题之一。钒氧化物具有多变的价态与化合物,通过多电子反应可获得高的存储容量,丰富的层状结构为高容量的钠离子存储提供了可能。通过对钒氧化物纳米结构的设计与优化可有效改善电极材料的储钠性能。主要综述了最近利用钒氧化物纳米结构的储钠机理与其性能优化策略的研究进展,并结合本课题组的研究工作讨论了相关的发展方向。

 
abortion las vegas period after abortion abortion pictures

 Sodium-ion batteries (SIBs) have aroused world-wide interesting in the development of next-generation energy storage technology, especially in the large scale energy storage systems, owing to the abundant resource and low cost of sodium. To realize safe, efficient and commercialized SIBs, the discovery and development of high performance cathode is indeed needed. Vanadium oxides with various valence state and compound exhibit high storage capacity though the multi-electro reaction. Moreover, various layered structure of vanadium oxides enable the large storage of sodium ions. The design and optimization of vanadium oxide nanostructure improve the electrochemical performance. This review summarizes recent development on sodium storage and their optimization strategies based on the layered vanadium oxide nanomaterials. Combining with our previous work and understanding, we summarize the further development of vanadium oxides for the application in high performance SIBs.

 
基金项目:
国家重大科学研究计划课题(2013CB934103, 2012CB933003);国家自然科学基金杰出青年基金(51425204);国家自然科学基金(51272197, 1072153);国家国际科技合作计划(2013DFA50840)。
作者简介:
魏湫龙(1988—),男,博士研究生。
参考文献:

 [1] 杨汉西, 钱江峰. 水溶液钠离子电池及其关键材料的研究进展[J],无机材料学报, 2013, 28(11): 1165–1171.

[2] GOODENOUGH J B, PARK K S. J Am Chem Soc, 2013, 135(4): 1167–1176.
[3] WANG Y L, XU M, PENG Z, ZHENG G F, et al. Direct growth of mesoporous Sn-doped TiO2 thin films on conducting substrates for lithium-ion battery anodes [J]. J Mater Chem A, 2013, 1(42): 13222–13226.
[4] WANG Q Y, ZHAO B D, ZHANG S, et al. Superior sodium intercalation of honeycomb-structured hierarchical porous Na3V2(PO4)3/C microballs prepared by a facile one-pot synthesis [J]. J Mater Chem A, 2015, 3(15): 7732–7740.
[5] RAJU V, RAINS J, GATES C, et al. Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition [J]. Nano Lett, 2014, 14(7): 4119–4124.
[6] LUO C, XU Y H, ZHU Y J, et al. Selenium@ Mesoporous carbon composite with superior lithium and sodium storage capacity [J]. ACS Nano, 2013, 7(9): 8003–8010.
[7] HE H N, JIN G H, WANG H Y, et al. Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries [J]. J Mater Che. A, 2014, 2(10): 3563–3570.
[8] KIM S W, SEO D H, MA X H, et al. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries [J]. Adv Energy Mater, 2012, 2(7): 710–721.
[9] ONG S P, CHEVRIER V L, HAUTIER G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials [J]. Energy Environ Sci, 2011, 4(9): 3680–3688.
[10] PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems [J]. Energy Environ Sci, 2012, 5(3): 5884–5901.
[11] SU D W, DOU S X, WANG G X. Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries [J]. J Mater Chem A, 2014, 2(29): 11185–11194.
[12] CHAO D, XIA X, LIU J, et al. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries [J]. Adv Mater, 2014, 26(33): 5794–5800.
[13] YAN M Y, WANG F C, HAN C H, et al. Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance [J]. J Am Chem Soc, 2013, 135(48): 18176–18182.
[14] YANG S B, GONG Y J, LIU Z, et al. Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage [J]. Nano Lett, 2013, 13(4): 1596–1601.
[15] CHERNOVA N A, ROPPOLO M, DILLON A C, et al. Layered vanadium and molybdenum oxides: batteries and electrochromics [J]. J Mater Chem, 2009, 19(17): 2526–2552.
[16] AN Q Y, WEI Q L, MAI L Q, et al. Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries [J]. Phys Chem Chem Phys, 2013, 15(39): 16828–16833.
[17] HUANG X, RUI X H, HNG H H, et al. Vanadium pentoxide-based cathode materials for lithium-ion batteries: morphology control, carbon hybridization, and cation doping [J]. Part Part Syst Charact, 2015, 32(3): 276–294.
[18] MAI L Q, WEI Q L, AN Q Y, et al. Nanoscroll buffered hybrid nanostructural VO2 (B) cathodes for high-rate and long-life lithium storage [J]. Adv Mater, 2013, 25(21): 2969–2973.
[19] ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nat Mater, 2005, 4(5): 366–377.
[20] MAI L Q, YANG F, ZHAO Y L, et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance [J]. Nat Commun, 2011, 2: 381.
[21] YANG P D, TARASCON J M. Towards systems materials engineering [J]. Nat Mater, 2012, 11(7): 560–563.
[22] MAI L Q, TIAN X C, XU X, et al. Nanowire electrodes for electrochemical energy storage devices [J]. Chem Rev, 2014, 114(23): 11828–11862.
[23] LI S, DONG Y F, XU L, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2 (PO4) 3 nanograins for high-performance symmetric sodium-ion batteries [J]. Adv Mater, 2014, 26(21): 3545–3553.
[24] TANG Y X, RUI X H, ZHANG Y Y, et al. Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process [J]. J Mater Chem A, 2013, 1(1): 82–88.
[25] ZHANG C F, CHEN Z X, GUO Z P, et al. Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties [J]. Energy Environ Sci, 2013, 6(3): 974–978.
[26] MAI L Q, DONG Y F, XU L, et al. Single nanowire electrochemical devices [J]. Nano Lett, 2010, 10(10): 4273–4278.
[27] JIANG J, LI Y Y, LIU J P, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage [J]. Adv Mater, 2012, 24(38): 5166–5180.
[28] CHENG C J, BAO S J, LI C M. A facile and well-tailored vanadium oxide porous network for high-capacity electrochemical capacitive energy storage [J]. Mater Lett, 2014, 120: 283–286.
[29] VU A, QIAN Y Q, STEIN A. Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special [J]. Adv Energy Mater, 2012, 2(9): 1056–1085.#
[30] MURPHY D W, CHRISTIAN P A, DISALVO F J, et al. Lithium incorporation by vanadium pentoxide [J]. Inorg Chem, 1979, 18(10): 2800–2803.
[31] ZAVALIJ P Y, WHITTINGHAM M S. Structural chemistry of vanadium oxides with open frameworks [J]. Acta Crystallogr, Sect B: Struct Sci, 1999, 55(5): 627–663.
[32] OKA Y, YAO T, YAMAMOTO N, UEDA Y, et al. Phase transition and V 4+-V 4+ pairing in VO2 (B) [J]. J Solid State Chem, 1993, 105(1): 271–278.
[33] ONODA M. Geometrically frustrated triangular lattice system NaxVO2: superparamagnetism in x = 1 and trimerization in x ≈ 0.7 [J]. Journal of Physics: Condensed Matter, 2008, 20(14): 145205
[34] MCQUEEN T M, STEPHENS P W, HUANG Q, et al. Successive orbital ordering transitions in NaVO2 [J]. Physical Review Letters, 2008, 101(16): 166402.
[35] DONG Y F, LI S, ZHAO K N, et al. Hierarchical zigzag Na1.25V3O 8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes [J]. Energy Environ Sci, 2015, 8(4): 1267–1275.
[36] GUIGNARD M, DIDIER C, DARRIET J, et al. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials [J]. Nat Mater, 2013, 12(1): 74–80.
[37] WANG W, JIANG B, HU L W, et al. Single crystalline VO2 nanosheets: a cathode material for sodium-ion batteries with high rate cycling performance [J]. J Power Sources, 2014, 250: 181–187.
[38] CLARK SJ, SEGALL MD, PICKARD CJ, et al. First principles methods using CASTEP [J]. Z Kristallogr - New Cryst Struct, 2005, 220(5/6/2005): 567–570.
[39] WEI Q L, LIU J, FENG W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity [J]. J Mater Chem A, 2015, 3(15): 8070–8075.
[40] TEPAVCEVIC S, XIONG H, STAMENKOVIC V R, et al. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries [J]. ACS Nano, 2011, 6(1): 530–538.
[41] MCNULTY D, BUCKLEY D N, O'DWYER C. Synthesis and electrochemical properties of vanadium oxide materials and structures as Li–ion battery positive electrodes [J]. J Power Sources, 2014, 267: 831–873.
[42] MORETTI A, MARONI F, OSADA I, et al. V2O5 aerogel as a versatile cathode material for lithium and sodium batteries [J]. ChemElectroChem, 2015, 2(4): 529–537.
[43] WEI Q L, JIANG Z Y, TAN S S, et al. Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage [J]. ACS Appl Mater Interfaces, 2015, 7(33): 18211–18217
[44] BI Z, PARANTHAMAN M P, MENCHHOFER P A, et al. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries [J]. J Power Sources, 2013, 222: 461–466.
[45] LEE J, URBAN A, LI X, SU D, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries [J]. Science, 2014, 343(6170): 519–522.
[46] HIBINO M, ABE K, MOCHIZUKI M, et al. Amorphous titanium oxide electrode for high-rate discharge and charge [J]. J Power Sources, 2004, 126(1): 139–143.
[47] SHENG J Z, LI Q D, WEI Q L, et al. Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode [J]. Nano Res., 2014, 7(11): 1604–1612. 
[48] UCHAKER E, CAO G Z. The role of intentionally introduced defects on electrode materials for alkali-ion batteries [J]. Chem - Asian J, 2015, 10(8): 1608–1627.
[49] VENKATESH G, PRALONG V, LEBEDEV O, et al. Amorphous sodium vanadate Na1.5+yVO3, a promising matrix for reversible sodium intercalation [J]. Electrochem Commun, 2014, 40: 100–102.
[50] UCHAKER E, ZHENG Y Z, LI S, et al. Better than crystalline: amorphous vanadium oxide for sodium-ion batteries [J]. J Mater Chem A, 2014, 2(43): 18208–18214.
[51] SU D, AHN HJ, WANG G. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance [J]. Chem Commun, 2013, 49(30): 3131–3133.
[52] WEI Q L, TAN S S, LIU X Y, et al. Novel polygonal vanadium oxide nanoscrolls as stable cathode for lithium storage [J]. Adv Funct Mater, 2015, 25(12): 1773–1779. 
[53] JI H X, WU X L, FAN L Z, et al. Self-wound composite nanomembranes as electrode materials for lithium ion batteries [J]. Adv Mater, 2010, 22(41): 4591–4595.
[54] SU D W, WANG G X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries [J]. ACS Nano, 2013, 7(12): 11218–11226.
[55] NOH H J, CHEN Z H, YOON C S, et al. Cathode material with nanorod structure-an application for advanced high-energy and safe lithium batteries [J]. Chem. Mater., 2013, 25(10): 2109–2115.
[56] KAVEEVIVITCHAI W, JACOBSON A J. High capacity microporous molybdenum-vanadium oxide electrodes for rechargeable lithium batteries [J]. Chem Mater, 2013, 25(13): 2708–2715.
[57] YANG Z C, ZHANG Y, KONG J H, et al. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers [J]. Chem Mater, 2013, 25(5): 704–710.
[58] HARTUNG S, BUCHER N, NAIR V S, et al. Sodium vanadium oxide: a new material for high-performance symmetric sodium-ion batteries [J]. ChemPhysChem, 2014, 15(10): 2121–2128.
[59] HU W, ZHANG X B, CHENG Y L, et al. Mild and cost-effective one-pot synthesis of pure single-crystalline β-Ag0.33V2O5 nanowires for rechargeable Li-ion batteries [J]. ChemSusChem, 2011, 4(8): 1091–1094.
[60] SONG J M, LIN Y Z, YAO H B, et al. Superlong β-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties [J]. ACS Nano, 2009, 3(3): 653–660.
[61] CABALLERO A, HERAN L, MORALES J, et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells [J]. J Mater Chem., 2002, 12(4): 1142–1147.
[62] D'ARIENZO M, RUFFO R, SCOTTI R J, et al. Layered Na0.71 CoO2: a powerful candidate for viable and high performance Na-batteries [J]. Phys Chem Chem Phys., 2012, 14(17): 5945–5952.
[63] 任文浩, 赵康宁, 郑志平, 等. 纳米线材料及其在电化学储能方面的应用[J]. 功能材料, 2014, 12: 003
[64] 麦立强, 陈丹丹, 赵康宁, 等. 纳米线电化学储能材料与器件[J], 科学通报, 2013, 58(32): 3312–3327.
[65] HAN C H, YAN M Y, MAI L Q, et al. V2O5 quantum dots/graphene hybrid nanocomposite with stable cyclability for advanced lithium batteries [J]. Nano Energy, 2013, 2(5): 916–922.
[66] YANG Y, WANG C Y, YUE B B, et al. Electrochemically synthesized polypyrrole/graphene composite film for lithium batteries [J]. Adv Energy Mater, 2012, 2(2): 266–272.
[67] ZHOU G M, WANG D W, LI F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries [J]. Chem Mater, 2010, 22(18): 5306–5313.
[68] 陈飞彪, 王英男, 吴伯荣, 等. 锂硫电池石墨烯/硫复合正极材料的制备及其电化学性能[J], 无机材料学报, 2014, 29(6): 627–632.
[69] CHAO D, ZHU C, XIA X, et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries [J]. Nano Lett, 2015, 15(1): 565–573.
[70] SUN Y, ZHAO L, PAN H L, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room- temperature sodium-ion batteries [J]. Nat Commun, 2013, 4: 1870
[71] YUAN S, HUANG X L, MA D L, et al. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode [J]. Adv Mater, 2014, 26(14): 2273–2279.
doxycycline doxycycline doxycycline
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com