首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
利用海藻酸钠自组装凝胶法制备YSZ 多孔陶瓷
作者:张月1 马宁2 王亚利2 侯博智1 王修慧1 杨金龙1 2 黄勇2 
单位:1. 大连交通大学 辽宁 大连 116028 2. 清华大学 北京 100084 
关键词:氧化锆陶瓷 单向直通孔结构 孔隙率 
分类号:TQ174.75
出版年,卷(期):页码:2016,44(6):787-794
DOI::10.14062/j.issn.0454-5648.2016.06.01
摘要:
采用海藻酸钠自组装凝胶法制备具有蜂窝陶瓷孔结构的YSZ(yttria-stabilised zirconia)多孔陶瓷。YSZ 多孔陶瓷具有有序的平行排列直通孔孔道、较高孔隙率和较好的机械强度。结果表明:调变浆料的固相含量可以有效调控YSZ 多孔陶瓷的显微结构和性能。当固相含量为5%(质量分数)时,样品孔密度高达25 000 cpsi,平均孔径、孔壁厚度和孔隙率分别为140 μm、25 μm 和74.9%;随着固相含量逐渐增加,样品孔隙率和孔密度减少,孔壁厚度和机械强度增加;但当固相含量增加到20%时,样品形成了总孔隙率为79.6%的一种特殊的多孔结构。
doxycycline doxycycline doxycycline
Porous yttria-stabilized zirconia (YSZ) ceramics with honeycomb-like pore structures were prepared by an alginate self-assembly gelation method. The unidirectional and gradual diffusion of Ca2+ ions into the alginate sol that contains YSZ particles result in the formation of highly ordered channels arranged parallel to the direction of diffusion. The obtained porous YSZ ceramics possess a uniform pore distribution and a high cell density of 25 000 cpsi (cells per square inch). The average pore size, channel wall thickness and porosity of the sample are 140 μm, 25 μm and 74.9%, respectively. The microstructure and properties of porous YSZ ceramics are greatly affected by the initial solid loading of the slurries. When the solid loading is increased from 5% to 15%, the channel wall thickness and mechanical strength of the samples are greatly increased. Additionally, it is indicated that when the solid loading is further increased to 20%, the sample forms a special porous microstructure with a high total porosity of 79.6%.
基金项目:
国家自然科学基金(51172120 和51572140)和中国博士后科学基金(2015M581089)资助
作者简介:
张 月(1991—),女,硕士研究生。
参考文献:
[1] CHEN J F, DING H M, WANG J X, et al. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application [J]. Biomaterials, 2004, 25: 723–727. [2] YANG J, YU J, HUANG Y. Recent developments in gelcasting of ceramics [J]. J Eur Ceram Soc, 2011, 31: 2569–2591. [3] YU J, YANG J, LI H, et al. Pore structure control of Si3N4 ceramics based on particle-stabilized foams [J]. J Porous Mater, 2011, 19:883–888. [4] ZHU Y, SHI J, SHEN W, et al. Stimuli- resp- onsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure [J]. Angew Chem, 2005, 117:5213–5217. [5] PENDERGAST M M, HOEK E M V. A review of water treatment membrane nanotechnologies [J]. Energy Environ Sci, 2011(4):1946–1971. [6] RAMAY H R, ZHANG M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods [J]. Biomaterials, 2003, 24: 3293–3302. [7] TOMANDL G, DESPANG F, BERNHARDT A, et al. Scaffolds for hard tissue engineering by ionotropic gelation of alginate-influence of selected preparation parameters [J]. J Am Ceram Soc, 2007, 90:1703–1708. [8] BOUZERARA F, HARABI A, ACHOUR S, et al. Porous ceramic supports for membranes prepared from kaolin and doloma mixtures [J]. J Eur Ceram Soc, 2006, 26: 1663–1671. [9] ISOBE T, TOMITA T, KAMESHIMA Y, et al. Preparation and properties of porous alumina ceramics with oriented cylindrical pores produced by an extrusion method [J]. J Eur Ceram Soc, 2006, 26:957–960. [10] OKADA K, UCHIYAMA S, ISOBE T, et al. Capillary rise properties of porous mullite ceramics prepared by an extrusion method using organic fibers as the pore former [J]. J Eur Ceram Soc, 2009, 29:2491–2497. [11] R?MER W, STEINEM C. Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina [J]. Biophys J, 2004, 86: 955–965. [12] LOCS J, BERZINA-CIMDINA L, ZHURINSH A, et al. Effect of processing on the microstructure and crystalline phase composition of wood derived porous SiC ceramics [J]. J Eur Ceram Soc, 2011, 31:183–188. [13] ZOLLFRANK C, KLADNY R, SIEBER H, et al. Biomorphous SiOC/C-ceramic composites from chemically modified wood templates [J]. J Eur Ceram Soc, 2004, 24: 479 –487. [14] ZHANG Y, HU L, HAN J, et al. Freeze casting of aqueous alumina slurries with glycerol for porous ceramics [J]. Ceram Int, 2010, 36:617–621. [15] ARAKI K, HALLORAN J W. Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique [J]. J Am Ceram Soc, 2005, 88: 1108–1114. [16] CHEN X, YU D, CAO L, et al. Fabrication of ordered porous anodic alumina with ultra-large interpore distances using ultrahigh voltages [J]. Mater Res Bull, 2014, 57: 116–120. [17] SHINGUBARA S. Fabrication of nanomaterials using porous alumina templates [J]. J Nanopart Res, 2003, 5: 17–30. [18] LEE D J, JANG J J, PARK H S, et al. Fabrication of biomorphic SiC composites using wood preforms with different structures [J]. Ceram Int, 2012, 38: 3089–3095. [19] OKADA K, ISOBE T, KATSUMATA K, et al. Porous ceramics mimicking nature-preparation and properties of microstructures with unidirectionally oriented pores [J]. Sci Technol Adv Mater, 2011, 12:341–345. [20] CAO J, RAMBO C R, SIEBER H. Preparation of porous Al2O3-ceramics by biotemplating of wood [J]. J Porous Mater, 2004,11: 163–172. [21] DEVILLE S, SAIZ E, NALLA R K, et al. Freezing as a path to build complex composites [J].Science, 2006, 311: 515–518. [22] ZHANG H, HUSSAIN I, BRUST M, et al . Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles [J]. Nat Mater, 2005(4): 787–793 . [23] MACCHETTA A, TURNER I G, BOWEN C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method [J]. Acta Biomater, 2009(5):1319–1327. [24] KOH Y H, LEE E J, YOON B H, et al. Effect of polystyrene addition on freeze casting of ceramic/camphene slurry for ultra-high porosity ceramics with aligned pore channels [J]. J Am Ceram Soc, 2006, 89:3646–3653. [25] OJUVA A, J?RVEL?INEN M, BAUER M, et al. Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting [J]. J Eur Ceram Soc, 2015, 35: 2607–2618. [26] WANG C C, YANG K C, LIN K H, et al. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology [J]. Biomaterials, 2011, 32:7118–7126. [27] MORAIS D S, RODRIGUES M A, SILVA T I, et al. Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes [J]. Carbohydr Polym, 2013, 95: 134–142. [28] DRAGET K I, TAYLOR C. Chemical, physical and biological properties of alginates and their biomedical implications [J]. Food Hydrocolloids, 2011, 25: 251–256. [29] DITTRICH R, DESPANG F, BERNHARDT A, et al. Mineralized scaffolds for hard tissue engineering by ionotropic gelation of alginate [J]. Adv Sci Technol, 2006, 49: 159–164. [30] FUKS L, FILIPIUK D, MAJDAN M. Transition metal complexes with alginate biosorbent [J]. J Mol Struct, 2006, 792: 104–109. [31] CHEN J P, HONG L, WU S, et al. Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation [J]. Langmuir, 2002, 18: 9413–9421. [32] ELJAOUHARI A A, MüllER R, KELLERMEIER M, et al. New anisotropic ceramic membranes from chemically fixed dissipative structures [J]. Langmuir, 2006, 22: 11353–11359. [33] KHAIROU K S, AL-GETHAMI W M, HASSAN R M. Kinetics and mechanism of sol–gel transformation between sodium alginate polyelectrolyte and some heavy divalent metal ions with formation of capillary structure polymembranes ionotropic gels [J]. J Membr Sci,2002, 209: 445–456. [34] LIU W, LI N, WANG Y, et al. Preparation and properties of 3–1 type PZT ceramics by a self-organization method [J]. J Eur Ceram Soc,2015, 35: 3467–3474.
abortion las vegas abortion pill online abortion pictures
abortion pill abortion pill abortion pill
cialis discount coupons coupons for cialis 2016 cialis 2015 coupon
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com