摘要:
|
采用真空熔融淬火结合等离子活化烧结工艺(PAS)制备SiC/β-Zn4Sb3 复合热电材料。对材料的相组成和显微结构分别进行X 射线衍射分析和扫描电子显微镜观察,并在300~700 K 范围内测量了电阻率、Seebeck 系数、热导率。结果表明,复合材料由SiC 和β-Zn4Sb3 两相组成,PAS 烧结过程中,β-Zn4Sb3 并没有发生相变,SiC 纳米粒子在β-Zn4Sb3 基体中随机分布。随着纳米SiC 含量增加,复合材料的电阻率逐渐增加,Seebeck 系数先增加后降低。当SiC 含量为1.0%(质量分数)、673 K 时,复合材料的热电优值(ZT)达到1.03,与单相β-Zn4Sb3 相比提高了37%。
|
SiC/β-Zn4Sb3 thermoelectric composites with different contents of SiC nanoparticles were prepared by a process of vacuum melting and quenching combined with plasma activated sintering (PAS). The phase compositions and microstructures of the materials were characterized by X-ray diffraction and scanning electron microscopy. The resistivity, the Seebeck coefficient and the thermal
conductivity were measured at 300–700 K. The results show that the composite is composed of SiC and β-Zn4Sb3 phases, and there is
no phase transition in the PAS process. The SiC nanoparticles are randomly distributed in β-Zn4Sb3matrix. The electrical transport
properties of the composite indicate that the resistivity increases, and the Seebeck coefficient firstly increases and then decreases with the increase of SiC content. When the content of SiC is 1.0%, the thermoelectric figure of merit (ZT) is 1.03 at 673 K, which is
increased by 37%, compared to that of single phase β-Zn4Sb3.
|
基金项目:
|
国家自然科学基金(51572111)资助。
|
作者简介:
|
张 超(1991—),男,硕士研究生。
|
参考文献:
|
[1] SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials [J]. Angew Chem Int Ed, 2009, 48:8616–8639.
[2] 厉英, 王淑兰, 张大勇, 等. 热电材料的研究现状及发展[J]. 材料导报, 2005, 19(9): 23–25.
LI Ying, WANG Shulan, ZHANG Dayong, et al. Mater Rev(in Chinese), 2005, 19(9): 23–25.
[3] 韩丽琴, 杨梅君, 沈强, 等. 硅化镁热电材料的放电等离子反应烧结[J]. 硅酸盐学报, 2008, 36(8): 337–340.
HAN Liqin, YANG Meijun, SHEN Qiang, et al. J Chin Ceram Soc, 2008, 36(8): 337–340.
[4] SNYDER G J, CHRISTENSEN M, NISHIBORI E, et al. Disordered zinc in β-Zn4Sb3 with phonon-glass and electron-crystal thermo-electric properties[J]. Nature Mater, 2004, 3: 458–462.
[5] TAPIERO M, TARABICHI S, GIES J G, et al. Preparation and characterization of Zn4Sb3[J]. Solar Energy Mater, 1985, 12: 257.
[6] CAILLAT T, FLEURIAL J P, BORAHCHEVSKY A. Preparation and thermoelectric properties of semiconducting Zn4Sb3[J]. J Phy Chem.
Solids, 1997, 58(7): 1119–1125.
[7] LIN J, LI X, QIAO G, et al. Unexpected high-temperature stability of β-Zn4Sb3 opens the door to enhanced thermoelectric performance[J]. J Am Chem Soc, 2014, 136(4): 1497–1504.
[8] TSUTSUI M, ZHANG L T, ITO K, et al. Effects of In-doping on the thermoelectric properties of β-Zn4Sb3[J]. Intermetallics, 2004,
12(7/8/9): 809–813.
[9] LUNDTOFT B, CHRISTENSEN M, IVERSEN B B, et al. Improved p-type thermoelectric materials, a process for their manufacture and
uses thereof[P]. Int Patent: 128467, 2006–12–06.
[10] NAKAMOTO G, SOUMA T, YAMABA M, et al. Thermoelectric properties of (Zn1?xCdx)4Sb3 below room temperature[J]. J Alloys Compds, 2004, 377(1/2): 59–65.
[11] Kim S G, Singh D J. First-principles study of Zn?Sb thermoelectrics[J]. Phys Rev B, 1998, 57: 6199–6203.
[12] MASATO U, RYOSUKE S, et al. SiC–B4C composites for synergistic enhancement of thermoelectric property[J]. J Eur Ceram Soc, 2004,
24(2): 409–412.
[13] VENKATASUBRANIAN R, SIIVOLA E, COLPITTS T. Thin-film thermoelectric devices with high room temperature figures of merit[J]. Nature Mater. 2001, 413: 597–602.
[14] LI J, LIU J. Effect of nano-SiC dispersion on thermoelectric properties of Bi2Te3 polycrystals [J]. Status Solidi A, 2006, 203(15): 3768–3773.
[15] DRESSELHAUS M S, CHEN G, TANG MY, et al. New directions for low-dimensional thermoelectric materials[J]. Adv Mater, 2007, 19:
1043–1053.cialis discount coupons go cialis 2015 coupon
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|