首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
碳化硅量子点表面物化特性的计算模拟
作者:朱彦敏1 宋月鹏1 2 孙亚楠3 韩志高1 高东升2 刘自平1 孙丰飞1 
单位:1. 山东农业大学机械与电子工程学院 山东省园艺机械与装备重点实验室 山东 泰安 271018  2. 山东农业大学园艺科学与工程学院 山东 泰安 271018 3. 山东交通职业学院中职学院 山东 潍坊 261206 
关键词:碳化硅量子点 X射线粉末衍射 晶体结构 化学吸附 
分类号:O482;O614
出版年,卷(期):页码:2016,44(5):733-739
DOI:10.14062/j.issn.0454-5648.2016.05.17
摘要:

采用化学腐蚀法制备碳化硅(SiC)量子点荧光材料,对其进行Fourier变换红外光谱分析及X射线粉末衍射结构解析,研究了SiC量子点的晶体结构,而后基于密度泛函理论的CASTEP平面波模守恒赝势对SiC量子点表面不同功能团的吸附机制进行计算模拟。结果表明:SiC量子点属于面心立方晶系,修正后的点阵参数为:a=b=c=0.434 8 nm,α=β=γ=90°,空间群为F-43m,晶型为3C-SiC,每单胞含化学式Z=4。Rietveld精修的2个主要可靠因子分别为:Rp=10.82%,Rwp=14.72%。–COOH、–OH功能团能够在SiC量子点表面形成稳定的化学键结合,键能分别为2.65、5.09 eV,并对吸附后构型的态密度、电子密度分布及其成键机理进行了分析探讨。

Silicon carbide quantum dots (SiC-QDs) fluorescent materials were prepared via a simple chemical etching method. The crystal structure and physico-chemical characteristics on the surface of SiC-QDs were investigated by X-ray powder diffraction and Fourier transform infrared spectroscopy (FTIR).The adsorption mechanism of different SiC surface functional groups were simulated based on the CASTEP plane wave model with the density functional theory and the conservation of the pseudo potential. The results show that for the face-centered cubic crystal system (FCC) of SiC-QDs, the final modified unit-cell parameters are a=b=c=0.434 8 nm and α=β=γ=90°, F-43m of space group, 3C-SiC of crystal type, every single cell contained chemical formula Z=4. For –COOH, –OH functional groups, the reliable factors of Rietveld refinement are 10.82% and 14.72%, which can result in the formation of a stable chemical bonds on the surface of the SiC-QDs with bond energy of 2.65 and 5.09 eV, HYPERLINK "C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20150816160402/javascript:void(0);"respectively. In addition, the density of states, the electron density distribution and the bonding mechanism of the configuration after adsorption were also analyzed.

基金项目:
山东省科技发展计划项目(2014GGX102012);中国博士后科学基金(2013M53163)项目;山东省现代农业产品技术体系果品创新团队专项经费资助项目。
作者简介:
朱彦敏(1987—),女,硕士研究生。
参考文献:
[1] FAN J Y, LI H X, JIANG J, et al. 3C-SiC nanocrystals as fluorescent biological labels[J]. Small, 2008, 4(8): 1058–1062.
[2] SAHU T, GHOSH B, PRDHAN S K, et al. Diverse role of silicon carbide in the domain of nanomaterials[J]. Int J Electrochem, 2012, doi: 10. 1155/2012/271285.
[3] FAN J Y, WU X L, CHU P K. Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties[J]. Prog Mater Sci, 51(2006): 983–1031.
[4] SADDOW S E. Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications[M]. Oxford: Elsevier' s Science and Technology Rights Department, UK. 2012.
[5] ZAKHARKO Y, SERDIUK T, NYCHYPORUK T, et al.  Plasmonenhaced Photoluminescence of SiC Quantum dots for cell imaging applications[J]. Plasmonics, 2012. DOI 10. 1007/s11468-012-9364-2.
[6] FUCHS F, SOLTAMOV V A, VATH S, et al. Silicon carbide light-emitting diode as a prospective room temperature source for single photons[J]. Science, 2013(3): 1–4.
[7] ROSSI A M, MURPHY T E, REIPA V. Ultraviolet Photoluminescence from 6H silicon carbide nanoparticles[J]. Appl Phys Lett, 2008, 92: 253112.
[8] LI Y, CHEN C X, LI J T, et al. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals[J]. Nanoscale Res Lett, 2011(6): 454–461.
[9] WANG J, XIONG S J, WU X L, et al. Nanocrystal Solid Films Exhibiting Broad and stable violet to Blue-Green Emission[J]. Nano Lett, 2010(10): 1466–1471.
[10] 宋月鹏, 康杰, 高东升, 等. 尖孢镰刀菌碳化硅量子点标记及其长时程荧光成像. 农业工程学报, 2013, 29(17): 286–292.
SONG Yuepeng, KANG Jie, GAO Dongsheng, et al. Transact CSAE (in Chinese), 2013, 29(17): 286–292.
[11] 孙祥鸣, 宋月鹏, 高东升, 等. 碳化硅量子点制备新工艺及其活体细胞荧光成像. 农业工程学报, 2012, 28(24): 260–264.
SUN Xiangmin, SONG Yuepeng, GAO Dongsheng, et al. Transact CSAE (in Chinese), 2012, 28(24): 260–264.
[12] 康杰, 宋月鹏, 朱彦敏, 等. 碳化硅量子点表面物化特性调控及其光学特性[J]. 硅酸盐学报, 2015, 43(4): 1–6.
KANG Jie, SONG Yuepeng, ZHU Yanmin, et al. J Chin Ceram Soc, 2015, 43(4): 1–6.
[13] BOTSOA J, LYSENKO V, GELOEN A, et al. Application of 3C-SiC quantum dots for living cell imaging[J]. Appl Phys Lett, 2008(92): 173902.
[14] 郭俊宏. 碳化硅及金纳米颗粒表面结构诱导的荧光特性及其应用[D]. 南京: 南京大学, 2014.
GUO Junhong. Surface structure induced fluorescence characteristics of 3C-SiC and Au nanoparticles and its application (in chinese, Dissertation). Nanjing: Nanjing University, 2014.
[15] CICERO G, CATELLANI A, GALLI G. Atomic control of water interaction with biocompatible surfaces: The case of SiC (001)[J]. Phys Rev Lett, 2004, 93(1): 016102.
[16] ALEKSEEV S A, ZAITSEV V N, BOTSOA J, et al. Fourier transform infrared spectroscopy and temperature programmed desorption mass spectrometry study of surface chemistry of porous 6H-SiC[J]. Chem Mater, 2007, 19: 2189.
[17] 曾超, 何维. 赤泥物相的X射线粉末衍射Rietveld法定量分析研究[J]. 冶金分析, 2014, 34(8): 1–6.
ZENG Chao, HE Wei. Metallurg Anal (in Chinese), 2014, 34(8): 1–6.
[18] 烟卫, 刘昱, 李艳苹, 等. X射线衍射法钾混盐无标样定量相分析[J]. 理化检验-化学分册, 2014, 50(4): 413–416.
YAN Wei, LIU Yu, LI Yanping, et al. Part B: Chem Anal (in Chinese), 2014, 50(4): 413–416.
[19] 宋月鹏, 高东升, 柳洪洁, 等. 水相碳化硅量子点及其制备方法和应用[P]. 中国专利. ZL201210208382.8. 2014-06-04.
SONG Yuepeng, GAO Dongsheng, LIU Hongjie, et al. Aqueous phase SiC quantum dot preparation method and application (in Chinese). CN Patent. ZL201210208382.8. 2014-06-04.  
cialis coupon cialis coupon cialis coupon
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com