首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
聚合物/层状矿物纳米复合材料的研究进展
作者:徐文1 武小雷2 孙伟福3 
单位:1. 西安建筑科技大学材料与矿资学院粉体工程研究所 西安 710055 中国  2. 西安建筑科技大学冶金工程学院 西安 710055 中国  3. 澳大利亚悉尼大学航天机械和机电工程学院先进材料技术中心 悉尼 2006 澳大利亚 
关键词:层状矿物 插层 剥离 纳米复合材料 力学性能 
分类号:O631.2;TB332
出版年,卷(期):页码:2016,44(5):769-779
DOI:10.14062/j.issn.0454-5648.2016.05.22
摘要:

聚合物/层状矿物纳米复合材料结合了聚合物的强韧性与纳米层状矿物的强力学性,具有优良的力学性能、热学性能、气体阻隔性能和导电性能等,实际应用广泛。介绍了聚合物/层状矿物纳米复合材料结构特点及其表征方法和制备方法、性能和应用,并综述了近年来聚合物/层状矿物纳米复合材料的研究进展,展望了该类材料的发展趋势。为了进一步加快该类材料的发展,应进一步从分子尺度上全面理解聚合物/层状矿物纳米复合材料的结构,尤其是聚合物主体与层状矿物片层间界面结构与性质对纳米复合材料整体性能的影响。 

Polymer/layered silicates nanocomposites exhibit improved mechanical and thermal properties as well as superior gas barrier and electrical properties and have been widely used since they combine strong toughness of polymers and strong mechanical properties of layered silicates nanofillers. This article briefly introduces the structure of polymer/layered silicates nanocomposites as well as their characterization techniques, fabrication and processing methods and properties and applications. In addition, recent research developments on polymer/layered silicates nanocomposites were reviewed, and trends of development of polymer/layered silicates nanocomposites were also represented. The further understanding of the structure from molecular scale, especially the impact of the structure and properties of the interface between polymer matrix and layered silicates nanofillers on predicting their macro properties, can favor the development and application of these materials.  

amoxicillin amoxicillin amoxicillin
cialis discount coupons coupons for cialis 2016 cialis 2015 coupon
基金项目:
国家自然科学基金(51504179);陕西省教育厅自然科学类专向科研计划项目(15JK1437);西安建筑科技大学人才基金(RC1402)。
作者简介:
徐 文(1985—),女,博士,讲师。
doxycycline doxycycline doxycycline
参考文献:
[1] 漆宗能, 尚文宇. 聚合物/层状硅酸盐纳米复合材料理论与实践[M]. 北京: 化学工业出版社, 2002: 1–205.
 [2] PAUL D R, ROBESON L M. Polymer nanotechnology: Nanocomposites [J]. Polymer, 2008, 49: 3187–3204.
[3] 刘钦甫, 左小超, 张士龙, 等. 置换插层制备高岭石-甲醇复合物的机理[J]. 硅酸盐学报, 2014, 42(11): 1428–1434.
LIU Qinfu, ZUO Xiaochao, ZHANG Shilong, et al. J Chin Ceram Soc, 2014, 42(11): 1428–1434.  
[4] 刘钦甫, 王定, 郭鹏, 等. 季铵盐-高岭石系列插层复合物的制备及结构表征[J]. 硅酸盐学报, 2015, 43(2): 222–230.
LIU Qinfu, WANG Ding, GUO Peng, et al. J Chin Ceram Soc, 2015, 43(2): 222–230.
[5] ZENG Q H, YU A B, LU G Q. Multiscale modeling and simulation of polymer nanocomposites [J]. Prog Polym Sci, 2008, 33: 191–269.
[6] LIU L M, QI Z N, ZHU X G. Studies on nylon 6 clay nanocomposites by melt-intercalation process [J]. Appl Polym Sci, 1999, 71(7): 1133–1138.
[7] YAO X Y, TIAN X Y, XIE D H, et al. Interface structure of poly(ethylene terephthalate)/silica nanocomposites [J]. Polymer, 2009, 50: 1251–1256.
[8] 刘钦甫, 李晓光, 郭鹏, 等. 高岭石--烷基胺插层复合物的制备与纳米卷的形成[J]. 硅酸盐学报, 2014, 42(8): 1064–1069.
LIU Qinfu, LI Xiaoguang, GUO Peng, et al. J Chin Ceram Soc, 2014, 42(8): 1064–1069.  
[9] 纪阳, 刘钦甫, 杜妍娜, 等. 高岭石-氨基硅烷插层复合物的制备与表征[J]. 硅酸盐学报, 2015, 43(4): 511–518.
JI Yang, LIU Qinfu, DU Yanna, et al. J Chin Ceram Soc, 2015, 43(4): 511–518.
[10] 左小超, 刘钦甫, 姬景超, 等. 脂肪酸/高岭石插层复合物的制备及结构模型[J]. 硅酸盐学报, 2015, 43(9): 1294–1299.
ZUO Xiaochao, LIU Qinfu, JI jingchao, et al. J Chin Ceram Soc, 2015, 43(9): 1294–1299.
[11] WU S H, WANG F Y, MA C C M, et al. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites [J]. Mater Lett, 2001, 49: 327–333.  
[12] GÜNTER B. Nanocomposites: a new class of flame retardants for polymers [J]. Plast Additives Compoud, 2002(4): 22–28.
[13] 崔继文,于莲香,张春玲,等. 4 , 4′-二氨基二苯醚二苯酮固化环氧树脂/黏土纳米复合材料的研究[J].高等学校化学学报,2007, 28(3): 592–595.
CUI Jiwen, YU Lianxiang, ZHANG Chunling, et al. Chem J Chin Univ (in Chinese), 2007, 28(3): 592–595.  
[14] ALEXANDRE M, DUBOIS P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials [J]. Mater Sci Eng, 2000, 28: 1–63.  
[15] MITTAL V. Optimization of polymer nanocomposite properties [M]. Germany: Wiley-VCH, 2009: 1–418.
[16] VAIA R A, GIANNELIS E P. Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment [J]. Macromolecules, 1997, 30: 8000–8009.  [17] PAVLIDOU S, PAPASPYRIDES C D. A review on polymer-layered silicate nanocomposites [J]. Prog Polym Sci, 2008, 33: 1119–1198.  
[18] RAY S S, OKAMOTO M. Polymer/layered silicate nanocomposites: a review from preparation to processing [J]. Prog Polym Sci, 2003, 28: 1539–1641.  
[19] VANDERHART D L, ASANO A, GILMAN J W. NMR Measurements related to clay-dispersion quality and organic-modifier stability in nylon-6/clay nanocomposites [J]. Macromolecules, 2001, 34: 3819–3822.  
[20] MANIAS E, KUPPA V. The origins of fast segmental dynamics in 2 nm thin confined polymer films [J]. Eur Phys J E, 2002(8): 193–199.
[21] ZENG Q H, YU A B, LU G Q, et al. Molecular dynamics simulation of organic-inorganic nanocomposites: Layering behavior and interlayer structure of organoclays [J]. Chem Mater, 2003(15): 4732–4738.
[22] ZENG Q H, YU A B, LU G Q, et al. Molecular dynamics simulation of the structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays [J]. Phys Chem B, 2004, 108: 10025–10033.
[23] ZENG Q H, XU W, YU A B, et al. Quantification of the interface interactions in polymer nanocomposites [J]. Mater Sci Forum, 2010, 654–656: 2608–2611.
[24] VAIA R A, GIANNELIS E P. Lattice Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates [J]. Macromolecules, 1997, 30: 7990–7999.
[25] LEE J Y, BALJON A R C, LORING R F. Spontaneous swelling of layered nanostructures by a polymer melt [J]. J Chem Phys, 1999, 111: 9754–9760.
[26] BALAZS A C, SINGH C, ZHULINA E, et al. Modeling the phase behavior of polymer/clay nanocomposites [J]. Acc Chem Res, 1999, 32: 651–657.
[27] FORNES T D, PAUL D R. Modeling properties of nylon 6/clay nanocomposites using composite theories [J]. Polymer, 2003, 44: 4993–5013.
[28] VALAVALA P K, ODEGARD G M. Modeling techniques for determination of mechanical properties of polymer nanocomposites [J]. Rev Adv Mater Sci, 2005(9): 34–44.
[29] REHAB A, SALAHUDDIN N. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay [J]. Mater Sci Eng, A, 2005, 399: 368–376.
[30] YANO K, USUKI A, OKADA A, et al. Synthesis and properties of polyimide clay hybrid [J]. Polym Sci, Part A: Polym Chem, 1993, 31: 2493–2498.  
[31] SHI X, GAN Z. Preparation and characterization of poly(propylene carbonate)/montmorillonite nanocomposites by solution intercalation [J]. Eur Polym J, 2007, 43: 4852–4858. [32] USUKI A, KAWASUMI M, KOJIMA Y, et al. Swelling behavior of montmorillonite cation exchanged for omega-amino acids by epsilon-caprolactam [J]. J Mater Res, 1993(8): 1174–1178.
[33] MITTAL V. Polymer layered silicate nanocomposites: A review [J]. Materials, 2009(2): 992–1057.  
[34] TONG X, ZHAO H, TANG T, et al. Preparation and characterization of poly (ethyl acrylate)/bentonite nanocomposites by in situ emulsion polymerization. [J] J Polym Sci, Part A: Polym Chem, 2002, 40: 1706–1711.  
[35] OKADA A, USUKI A. The chemistry of polymer-clay hybrids [J]. Mater Sci Eng, 1995(3): 109–115.  
[36] KAWASUMI M, HASEGAWA N, KATO M, et al. Preparation and mechanical properties of polypropylene-clay hybrids [J]. Macromolecules, 1997, 30: 6333–6338.  
[37] LAN T, KAVIRATNA P D, PINNAVAIA T. Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites [J]. J Chem Mater, 1995(7): 2144–2150.  
[38] MESSERSMITH P B, GIANNELIS E P. Synthesis and characterization of layered silicate-epoxy nanocomposites [J]. Chem Mater, 1994(6): 1719–1725.  
[39] BEYER G. Nanocomposites: a new class of flame retardants for polymers [J]. Plast Addit Compd, 2002(4): 22–28.  
[40] SOLOMON M J, ALMUSALLAM A S, SEEFELDT K F, et al. Rheology of polypropylene/clay hybrid materials [J]. Macromolecules, 2001, 34: 1864–1872.  
[41] KORNMANN X, LINDBERG H, BERGLUND L A. Synthesis of epoxy-clay nanocomposites: influence of the nature of the curing agent on structure [J]. Polymer, 2001, 42: 4493–4499.  
[42] HUSSAIN F, HOJJATI M, OKAMOTO M, et al. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview [J]. Compos Mater, 2006, 40: 1511–1575.  
[43] ORIAKHI C O, FARR I V, LERNER M M. Thermal characterization of poly(styrene sulfonate) layered double hydroxide nanocomposites [J]. Clays Clay Miner, 1997, 45: 194–202.  
[44] WILSON O C, OLORUNYOLEMI T, JAWORSKI A, et al. Surface and interfacial properties of polymer-intercalated layered double hydroxide nanocomposites [J]. Appl Clay Sci, 1999, 15: 265–279.  
[45] KOJIMA Y, USUKI A, KAWASUMI M, et al. Mechanical-properties of nylon 6-clay hybrid [J]. J Mater Res, 1993(8): 1185–1189.  
[46] LUO J J, DANIEL I M. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites [J]. Compos Sci Technol, 2003, 63: 1607–1616.  
[47] WAN D, WANG Y, WEN X, et al. The rheological, thermostable, and mechanical properties of polypropylene/fullerene C60 nanocomposites with improved interfacial interaction [J]. Polym Eng Sci, 2012, 52: 1457–1463.  
[48] FORNES T D, YOON P J, HUNTER D L, et al. Effect of organoclay structure on nylon 6 nanocomposite morphology and properties [J]. Polymer, 2002, 43: 5915–5933.  
[49] NAM P H, MAITI P, OKAMOTO M, et al. A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites [J]. Polymer, 2001, 42: 9633–9640.  
[50] JI X L, JING J K, JIANG W, et al. Tensile modulus of polymer nanocomposites [J]. Polym Eng Sci, 2002, 42: 983–993.  
[51] LACHMAN N, WAGNER H D. Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites [J]. Compos Part A, 2010, 41: 1093–1098. [52] ANOUKOU K, ZAIRI F, NAIT-ABDELAZIZ M, et al. On the overall elastic moduli of polymer-clay nanocomposite materials using a self-consistent approach. Part II: Experimental verification [J]. Compos Sci Technol, 2011, 71: 206–215.  
[53] G'SELL C, HIVER J M, DAHOUN A. Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking [J]. Int J Solids Struct, 2002, 39: 3857–3872.  
[54] BENVENISTE Y. A New approach to the application of mori-tanaka theory in composite-materials [J]. Mech Mater, 1987(6): 147–157.  
[55] MASENELLI-VARLOT K, REYNAUD E, VIGIER G, et al. Mechanical properties of clay-reinforced polyamide [J]. Polym Sci, Part B: Polym Phys, 2002, 40: 272–283.  
[56] XU W, ZENG Q H, YU A B. Young’s modulus of effective clay clusters in polymer nanocomposites [J]. Polymer, 2012, 53: 3735–3740.  
[57] XU W, ZENG Q H, YU A B, et al. Determination of interphase thickness and mechanical properties of effective nanofillers in polymer nanocomposites by molecular dynamic simulation [J]. Mater Sci Forum, 2010, 654–656: 1654–1658.
[58] SHENG N, BOYCE M C, PARKS D M, et al. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle [J]. Polymer, 2004, 45: 487–506.  
[59] ZENG Q H, YU A B, LU G Q, et al. Clay-based polymer nanocomposites: Research and commercial development [J]. J Nanosci Nanotechnol, 2005(5): 1574–1592.  
[60] BLUMSTEIN A. J. Polymerization of adsorbed monolayers .2. thermal degradation of inserted polymer [J]. Polym Sci, Part A: Polym Chem, 1965(3): 2665–2672.  
[61] BURNSIDE S D, GIANNELIS E P. Synthesis and properties of new poly(dimethylsiloxane) nanocomposites [J]. Chem Mater, 1995(7): 1597–1600.  
[62] ZANETTI M, CAMINO G, THOMANN R, et al. Synthesis and thermal behaviour of layered silicate-EVA nanocomposites [J]. Polymer, 2001, 42: 4501–4507.  
[63] Qiu L Z, Chen W, Qu B J. Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites [J]. Polymer, 2006, 47: 922–930.  
[64] FUJIWARA S, SAKAMOTO T. Method for manufacturing a clay polyamide composite [P]. Japanese Kokai Patent Application No.SHO 51-109998, 1976.
[65] LEE J, TAKEKOSHI T, GIANNELIS E P. Fire retardant polyetherimide nanocomposites in Nanophase and Nanocomposite Materials II [C]. Materials Research Society, 1997. 513–518.
[66] GILMAN J W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites [J]. Appl Clay Sci, 1999, 15: 31–49.  
[67] ZHANG J G, WILKIE C A. Preparation and flammability properties of polyethylene-clay nanocomposites [J]. Polym Degrad Stab, 2003, 80: 163–169.  
[68] YANO K, USUKI A, OKADA A. Synthesis and properties of polyimide-clay hybrid films [J]. J Polym Sci, Part A: Polym Chem, 1997, 35: 2289–2294.  
[69] ARUNVISUT S, PHUMMANEE S, SOMWANGTHANAROJ A. Effect of clay on mechanical and gas barrier properties of blown film LDPE/Clay nanocomposites [J]. J Appl Polym Sci, 2007, 106: 2210–2217.  
[70] MITTAL V. Gas permeation and mechanical properties of polypropylene nanocomposites with thermally-stable imidazolium modified clay [J]. Eur Polym J, 2007, 43: 3727–3736.  
[71] PASSAGLIA E, BERTOLDO M, CERIEGI S, et al. Oxygen and water vapor barrier properties of MMT nanocomposites from low density polyethylene or EPM with grafted succinic groups [J]. J Nanosci Nanotechnol, 2008(8): 1690–1699.  
[72] KOH H C, PARK J S, JEONG M A, et al. Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes [J]. Desalination, 2008, 233: 201–209.  
[73] Nielsen L E, Models for the permeability of filled polymer systems [J]. J Macromol Sci, Part A: Pure Appl Chem, 1967(1): 929-942.  
[74] CHOUDALAKIS G, GOTSIS A D. Permeability of polymer/clay nanocomposites: A review [J]. Eur Polym J, 2009, 45: 967–984.  
[75] OSMAN M A, MITTAL V, SUTER U W. Poly(propylene)-layered silicate nanocomposites: Gas permeation properties and clay exfoliation [J]. Macromol Chem Phys, 2007, 208: 68–75.  
[76] ARANDA P, GALVAN J C, CASAL B, et al. Ionic-conductivity in layer silicates controlled by intercalation of macrocyclic and polymeric oxyethylene compounds [J]. Electrochim Acta, 1992, 37: 1573–1577.  
[77] LIAO B, SONG M, LIANG H J, et al. Polymer-layered silicate nanocomposites. 1. A study of poly(ethylene oxide)/Na+-montmorillonite nanocomposites as polyelectrolytes and polyethylene-block-poly(ethylene glycol) copolymer/Na+- montmorillonite nanocomposites as fillers for reinforcement of polyethylene [J]. Polymer, 2001, 42: 10007–10011.  
[78] ALSALHI M S, ALAM J, KASSIM A, et al. Recent advances in conjugated polymers for light emitting devices [J]. Int J Mol Sci, 2011, 12(3): 2036–2054.
[79] ORIAKHI C O, LERNER M M. Poly(pyrrole) and poly(thiophene)/clay nanocomposites via latex-colloid interaction [J]. Mater Res Bull, 1995, 30: 723–729.  
[80] MEHROTRA V, GIANNELIS E P. Nanometer scale multilayers of electroactive polymers-intercalation of polypyrrole in mica-type silicates [J]. Solid State Ionics, 1992, 51: 115–122.  
[81] YEH J M, CHIN C P, CHANG S. Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole-clay nanocomposite materials [J]. J Appl Polym Sci, 2003, 88: 3264–3272.  
[82] ZENG Q H, WANG D Z, YU A B, et al. Synthesis of polymer-montmorillonite nanocomposites by in situ intercalative polymerization [J].Nanotechnology, 2002, 13: 549–553.  
[83] MEHROTRA V, GIANNELIS E P. Metal-insulator molecular multilayers of electroactive polymers–intercalation of polyaniline in mica-type layered silicates [J]. Solid State Commun, 1991, 77: 155–158.  
[84] RATTO J A, STEEVES D M, WELSH E A, et al. Antec '99: Plastics Bridging the Millennia. Brookfield Center[C]: Soc Plastics Engineers, 1999: 1628–1632.
[85] LEE S R, PARK H M, LIM H, et al. Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites [J]. Polymer, 2002, 43: 2495–2500.  
[86] LIU P, ZHAO M. J. Photo-oxidative degradation of poly(vinyl chloride) based nanocomposites under ultraviolet irradiation [J]. Dispersion Sci Technol, 2010, 31: 1167–1172.  [87] PANDEY J K, RAGHUNATHA R K, PRATHEEP K A, et al. An overview on the degradability of polymer nanocomposites [J]. Polym Degrad Stab, 2005, 88: 234–250.  
[88] BOGUE R. Nanocomposites: a review of technology and applications [J]. Assem Autom, 2011, 31: 106–112.  
[89] SOLOUKHIN V A, POSTHUMUS W, BROKKEN-ZIJP J C M, et al. Mechanical properties of silica–(meth)acrylate hybrid coatings on polycarbonate substrate [J]. Polymer, 2002, 43: 6169–6181.  
[90] SAXENA A, TRIPATHI B P, SHAHI V K. Sulfonated poly(styrene-co-maleic anhydride)−poly(ethylene glycol)−silica nanocomposite polyelectrolyte membranes for fuel cell applications [J]. J Phys Chem B, 2007, 111: 12454–12461.  
 

 

服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com