首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硬模板法制备固体氧化物燃料电池复合阳极GDC–SrMoO4–YSZ
作者:由宏新1 2 招聪1 管亚军1 官国清2 阿布里提·阿布都拉2 
单位:1. 大连理工大学化工机械学院 辽宁 大连 116024  
关键词:固体氧化物燃料电池 钙钛矿结构 钼酸锶 硬模板法 
分类号:
出版年,卷(期):页码:2016,44(7):919-924
DOI:
摘要:

以活性炭纤维为模板,用硬模板法合成钙钛矿材料SrMoO4,并在SrMoO4阳极上浸渍Gd0.2Ce0.8O1.9(GDC),制备出GDC–SrMoO4–YSZ复合阳极。分别以SrMoO4–YSZ和GDC–SrMoO4–YSZ为阳极,制备了固体氧化燃料单电池,并测试了其电性能。探究了不同浸渍次序下,阳极的材料组成对电池发电性能的影响。结果表明,以CH4为燃料,工作温度为800 ℃时,SrMoO4中浸渍GDC质量分数为50%,SrMoO4与YSZ质量比为5:5的阳极材料,最大功率密度为317.15 mW/cm2;SrMoO4–YSZ中GDC浸渍量为50%时,单电池性能最佳,最大功率达到361.01 mW/cm2。
 

Using active carbon fiber as template, perovskite material SrMoO4 was synthesized by hard template method, which was impregnated with Gd0.2Ce0.8O1.9(GDC) to prepare the composite anode material GDC–SrMoO4–YSZ. The power performances of the solid oxide fuel cells fabricated with SrMoO4–YSZ and GDC–SrMoO4–YSZ as anode were measured. The effect of different mass ratio of anode composition material under different impregnation sequence was researched to achieve better electrical performance. Using CH4 as fuel gas at 800 ℃, when the impregnation of GDC in SrMoO4 was 50%, the SrMoO4 and YSZ mass ratio of 5:5 in anode shows the maximum power density of 317.15 mW/cm2; When the impregnation of GDC in SrMoO4–YSZ was 50%, corresponding single cell displayed best performance and achieved a maximum power density of 361.01 mW/cm2.
 

abortion las vegas period after abortion abortion pictures
基金项目:
作者简介:
由宏新(1963—),男,硕士,副教授。
sumatriptan side effects sumatriptan side effects sumatriptan side effects
参考文献:

[1] STEELE B C H, HEINZEL A. Materials for fuel–cell technologies [J]. Nature, 2001, 414(6861): 345–352.
[2] LIU J, BARNETT S A. Operation of anode–supported solid oxide fuel cells on methane and natural gas[J]. Solid State Ionics, 2003, 158(1): 11–16.
[3] WANG W, JIANG S P, TOK A I Y, et al. GDC–impregnated Ni anodes for direct utilization of methanein solid oxide fuel cells[J]. J Power Sources, 2006, 159(1): 68–72.
[4] SANTARELLI M, QUESITO F, NOVARESIO V, et al. Direct reforming of biogas on Ni–based SOFC anodes:Modelling of heterogeneous reactions and validation with experiments[J]. J Power Sources, 2013, 242: 405–414.
[5] OVALLE A, RUIZ–MORALES J C, CANALES–VáZQUEZ J, et al. Mn–substituted titanates as efficient anodes for direct methane SOFCs[J]. Solid State Ionics, 2006, 177(19/25): 1997–2003.
[6] PILLAI M R, KIM I, BIERSCHENK D M, et al. Fuel–flexible operation of a solid oxide fuel cell with Sr0.8La0.2TiO3 support[J]. J Power Sources, 2008, 185(2): 1086–1093.
[7] YOO K B, PARK B H, CHOI G M. Stability and performance of SOFC with SrTiO3–based anode in CH4 fuel[J]. Solid State Ionics, 2012, 225: 104–107.
[8] JIANG S, CHEN X, CHAN S, et al. (La0.75Sr0.25)(Cr0.5Mn0.5)O3/ YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells[J]. Solid State Ionics, 2006, 177(1/2): 149–157.
[9] HUANG Y H, DASS R I, XING Z L, et al. Double perovskites as anode materials for solid–oxide fuel cells[J]. Science, 2006, 312(5771): 254–257.
[10] SMITH B H, GROSS M D. A highly conductive oxide anode for solid oxide fuel cells[J]. Electrochem Solid–State Lett, 2011, 14(1): B1–B5.
[11] MENG X, LIU X, HAN D, et al. Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3?δ electrodes[J]. J Power Sources, 2014, 252: 58–63.
[12] YOO K B, PARK B H, CHOI G M. Stability and performance of SOFC with SrTiO3–based anode in CH4 fuel[J]. Solid State Ionics, 2012, 225: 104–107.
[13] KIM H S, YOON S P, YUN J W, et al. Sr0.92Y0.08TiO3?δ/Sm0.2Ce0.8O2?δ anode for solid oxide fuel cells running on methane[J]. Int J Hydrogen Energy, 2012, 37(21): 16130–16139.
[14] YOO K B, CHOI G M.LST–GDC composite anode on LaGaO3–based solid oxide fuel cell[J]. Solid State Ionics, 2011, 192(1): 515–518.
[15] GROSS M D, VOHS J M, GORTE R J. An examination of SOFC anode functional layers based on ceria in YSZ[J]. J Electrochem Soc, 2007, 154(7): B694–B702.
[16] XIAO P,GE X,LIU Z, et al. Sr1?xCaxMoO3–Gd0.2Ce0.8O1.9 as the anode in solid oxide fuel cells: Effects of Mo precipitation[J]. J Alloy Compd, 2014, 587: 326–331.
[17] YOU H X, ABULITI A, DING X W, et al. Reactions of low and middle concentration dry methane over Ni/YSZ anode of solid oxide fuel cell[J]. J Power Sources, 2007, 165(2): 722–727.
[18] XIAO P, GE X, ZHANG L, et al. H2 and CH4 oxidation on Gd0.2Ce0.8O1.9 infiltrated SrMoO3–yttria–stabilized zirconia anode for solid oxide fuel cells [J]. Int J Hydrogen Energy, 2012, 37(23): 18349–18356.
[19] BALDYCHEV I, JAVADEKAR A, BUTTREY D J. et al. A study of the redox properties and methanol oxidation rates for molybdenum–based mixed oxides[J]. Appl Catal A, 2011, 394(1/2): 287–293.
[20] MARTINEZ–CORONADO R, ALONSO J A, FERNANDEZ–DIAZ M T. SrMo0.9Co0.1O2?δ: a potential anode for intermediate–temperature solid–oxide fuel cells (IT–SOFC)[J]. J Power Sources, 2014, 258: 76–82.
[21] SMITH B, GROSS M D. SOFC anodes prepared by infiltration of strontium molybdate into porous YSZ[C]//Meeting Abstracts. Electrochem Soc, 2010(12): 1162–1162.
[22] JIANG S P, CHEN X J, CHAN S H, et al. (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells[J]. Solid State Ionics, 2006, 177(1): 149–157.
 
 

cialis discount coupons cialis 2015 coupon
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com