[1] STEELE B C H, HEINZEL A. Materials for fuel–cell technologies [J]. Nature, 2001, 414(6861): 345–352.
[2] LIU J, BARNETT S A. Operation of anode–supported solid oxide fuel cells on methane and natural gas[J]. Solid State Ionics, 2003, 158(1): 11–16.
[3] WANG W, JIANG S P, TOK A I Y, et al. GDC–impregnated Ni anodes for direct utilization of methanein solid oxide fuel cells[J]. J Power Sources, 2006, 159(1): 68–72.
[4] SANTARELLI M, QUESITO F, NOVARESIO V, et al. Direct reforming of biogas on Ni–based SOFC anodes:Modelling of heterogeneous reactions and validation with experiments[J]. J Power Sources, 2013, 242: 405–414.
[5] OVALLE A, RUIZ–MORALES J C, CANALES–VáZQUEZ J, et al. Mn–substituted titanates as efficient anodes for direct methane SOFCs[J]. Solid State Ionics, 2006, 177(19/25): 1997–2003.
[6] PILLAI M R, KIM I, BIERSCHENK D M, et al. Fuel–flexible operation of a solid oxide fuel cell with Sr0.8La0.2TiO3 support[J]. J Power Sources, 2008, 185(2): 1086–1093.
[7] YOO K B, PARK B H, CHOI G M. Stability and performance of SOFC with SrTiO3–based anode in CH4 fuel[J]. Solid State Ionics, 2012, 225: 104–107.
[8] JIANG S, CHEN X, CHAN S, et al. (La0.75Sr0.25)(Cr0.5Mn0.5)O3/ YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells[J]. Solid State Ionics, 2006, 177(1/2): 149–157.
[9] HUANG Y H, DASS R I, XING Z L, et al. Double perovskites as anode materials for solid–oxide fuel cells[J]. Science, 2006, 312(5771): 254–257.
[10] SMITH B H, GROSS M D. A highly conductive oxide anode for solid oxide fuel cells[J]. Electrochem Solid–State Lett, 2011, 14(1): B1–B5.
[11] MENG X, LIU X, HAN D, et al. Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3?δ electrodes[J]. J Power Sources, 2014, 252: 58–63.
[12] YOO K B, PARK B H, CHOI G M. Stability and performance of SOFC with SrTiO3–based anode in CH4 fuel[J]. Solid State Ionics, 2012, 225: 104–107.
[13] KIM H S, YOON S P, YUN J W, et al. Sr0.92Y0.08TiO3?δ/Sm0.2Ce0.8O2?δ anode for solid oxide fuel cells running on methane[J]. Int J Hydrogen Energy, 2012, 37(21): 16130–16139.
[14] YOO K B, CHOI G M.LST–GDC composite anode on LaGaO3–based solid oxide fuel cell[J]. Solid State Ionics, 2011, 192(1): 515–518.
[15] GROSS M D, VOHS J M, GORTE R J. An examination of SOFC anode functional layers based on ceria in YSZ[J]. J Electrochem Soc, 2007, 154(7): B694–B702.
[16] XIAO P,GE X,LIU Z, et al. Sr1?xCaxMoO3–Gd0.2Ce0.8O1.9 as the anode in solid oxide fuel cells: Effects of Mo precipitation[J]. J Alloy Compd, 2014, 587: 326–331.
[17] YOU H X, ABULITI A, DING X W, et al. Reactions of low and middle concentration dry methane over Ni/YSZ anode of solid oxide fuel cell[J]. J Power Sources, 2007, 165(2): 722–727.
[18] XIAO P, GE X, ZHANG L, et al. H2 and CH4 oxidation on Gd0.2Ce0.8O1.9 infiltrated SrMoO3–yttria–stabilized zirconia anode for solid oxide fuel cells [J]. Int J Hydrogen Energy, 2012, 37(23): 18349–18356.
[19] BALDYCHEV I, JAVADEKAR A, BUTTREY D J. et al. A study of the redox properties and methanol oxidation rates for molybdenum–based mixed oxides[J]. Appl Catal A, 2011, 394(1/2): 287–293.
[20] MARTINEZ–CORONADO R, ALONSO J A, FERNANDEZ–DIAZ M T. SrMo0.9Co0.1O2?δ: a potential anode for intermediate–temperature solid–oxide fuel cells (IT–SOFC)[J]. J Power Sources, 2014, 258: 76–82.
[21] SMITH B, GROSS M D. SOFC anodes prepared by infiltration of strontium molybdate into porous YSZ[C]//Meeting Abstracts. Electrochem Soc, 2010(12): 1162–1162.
[22] JIANG S P, CHEN X J, CHAN S H, et al. (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells[J]. Solid State Ionics, 2006, 177(1): 149–157.
cialis discount coupons cialis 2015 coupon
|