[1] STANLEY R L, ELIZABETH J O, MICHAEL C. H, et al. Evaluation of ultra–high temperature ceramics for aeropropulsion use[J]. J Eur Ceram Soc, 2002, (22): 2757–2767.
[2] SCHMIDT, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astron, 2004, 55(319): 409–420.
[3] HU Ping, WANG Zhi. Flexural strength and fracture behavior of ZrB2–SiC ultra–high temperature ceramic composites at 1 800 ℃[J]. J Eur Ceram Soc, 2010, 30(4): 1021–1026.
[4] FAHRENHOHZ W G, HILMAS G E, TALMY I G, et a1. Refractory dibofides of zirconium and hafnium[J]. J Am Ceram Soc, 2007, 90(5):
1347–1364.
[5] 童长青, 成来飞, 刘永胜, 等. 2D C/SiC–ZrB2复合材料的烧蚀性能[J]. 航空材料学报, 2012, 32(2): 69–73.
TONG Changqing, CHENG Laifei, LIU Yongsheng, et al. J Aeronaut Mater(in Chinese), 2012,32(2): 69–73.
[6] HU Haifeng, WANG Qikun, CHEN Zhaohui, et al. Preparation and characterization of C/SiC–ZrB2 composites by precursor infiltration and pyrolysis process[J]. Ceram Int, 2010, 36(3): 1011–1016.
[7] WANG Yiguang, LIU Wen, CHENG Laifei, et al. Preparation and properties of 2D C/ZrB2–SiC ultra–high temperature ceramic composites[J], Mater Sci Eng A 2009, 524(1/2): 129–133.
[8] YAN Liansheng, CUI Hong. Carbon cloth reinforced polyarylacetylene ablative materials[J], J Adv Mater, 2007, 39(3): 22–25.
[9] KRISTOFFER K, ZMAGO S, TOMA K. Preparation and properties of C/C–SiC nano–composites[J]. J Eur Ceram Soc, 2007, 27(2): 1211–216.
[10] ODESHI A G, MUCHA H, WIELAGE B. Manufacture and characterisation of a low cost carbon fibre reinforced C/SiC dual matrix composite[J]. Carbon, 2006, 44(10): 1994–2001.
[11] 聂景江, 徐永东, 张立同, 等. 化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能[J]. 硅酸盐学报, 2006, 34(10): 1238–1246.
NI Jingjiang, XU Yongdong, ZHANG litong, et al. J Chin Ceram Soc, 2006, 34(10): 1238–1246.
[12] 王琴, 张强, 柳发成, 等. ZrB2改性C/C–SiC复合材料性能研究[J]. 宇航材料工艺, 2012, 6: 52–55.
WANG Qin, ZHANG Qiang, LIU Facheng, et al. Aeros Mater Tech(in Chinese), 2012, 6: 52–55.
[13] WANG C R, YANG J M, HOFFMAN W. Thermal stability of refractory carbide/boride composites[J]. Mater Chem Phys, 2002, 74(3): 272–281.
[14] OPILA E, LEVINE S. Oxidation of ZrB2– and HfB2–based ultra–high temperature ceramics: Effect of Ta additions[J]. J Mater Sci, 2004, 39(39): 5969–5977.
[15] REZAIE A, FAHRENHOHZ W G, HILMAS G E. Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1 500 ℃ [J]. J Eur Ceram Soc, 2007, 27(6): 2495–2501.
|