[1] KANDOLA B K, HORROCKS A R, MYLER P, et al. The effect of intumescents on the burning behaviour of polyester–resin–containing composites[J]. Compos A: Appl Sci Manufac, 2002, 33(6): 805–817.
[2] HOU L X,LIU Y. Structures and properties of organic rectorite/epoxy resin composites[J]. J Chin Ceram Soc (in Chinese), 2011, 39(7): 1223–1228.
[3] EGGLESTONE G T, TURLEY D. Flammability of GRP for use in ship superstructure[J]. Fire Mater, 1994, 18(4): 255–260.
[4] BAYDRY A, DUFAY J, REGNEIR N, et al. Thermal degradation and fire behaviour of unsaturated polyester with chain ends modified by dicyclopentadiene[J]. Polym Degrad Stabil, 1998, 61(3): 441–452.
[5] CHIU H T, CHIU S H, JENG R E, et al. A Study of the combustion and fire–retardance behaviour of unsaturated polyester/phenolic resin blends[J]. Polym Degrad Stabil, 2000, 70(3): 505–514.
[6] HU S, SUN W W, CHEN F, et al. Effect of Aluminium hydroxide and α–SiO2 on thermal decomposition of ammonium polyphosphate[J]. J Chin Ceram Soc, 2015, 43(6): 809–816
[7] WALCZAK E K. New ecological polyester resins with reduced flammability and smoke evolution capacity[J]. Polym Degrad Stabil, 1999, 64(3): 39–442.
[8] ATKINSON P, HANIES P J, SKINNERE G A. Inorganic tin compounds as flame retardants and smoke suppressants for polyester thermosets[J]. Thermochim Acta, 2000, 360(1): 29–40.
[9] WALCZAK E K. Kinetics of thermal decomposition of unsaturated polyester resins with reduced flammability[J]. J Appl Polym Sci, 2003, 88(13): 851–2857.
[10] FEMADES J V. Thermogravimetric evaluation of polyester/sisal flame retarded composite[J]. Thermochim Acta, 2002, 392/393(1): 71–77.
[11] YENG F S. Expandable graphite systems for phosphorus–containing unsaturated polyester, 2 kinetic study of degradation process[J]. Macromol Chem Phys, 2005, 206(3): 83–392
[12] YENG F S, RU J J. Thermal degradation behaviour and kinetic analysis of unsaturated polyester–based composites and IPNs by conventional and modulated thermogravimetric analysis[J]. Polym Degrad Stabil, 2006, 91(4): 823–831.
[13] AKTINSON P A, HAINES P J, SKINNER G. Studies of fire– retardant polyester thermosets using thermal methods[J]. J Therm Anal Calorim, 2000, 59(1/2): 95–408.
[14] FENG S F, NING G L, LI X, et al. Ultra–fine and surface– modified of brucite with water[J]. J Func Mater, 2007, 38: 2819–2821,.
[15] YE L, QU B J. Flammability characteristics and flame retardant mechanism of phosphate–intercalate hydrotalcite in halogen–free flame retardant EVA blends[J]. Polym Degrad Stabil, 2008, 93(5): 918–924.
[16] LEONARD J E, BOWDITCH P A, DOWLING V P. Development of a controlled–atmosphere cone calorimeter[J]. Fire Mater, 2000, 24(3): 143–150.
[17] OZAWA T. A new method of analyzing thermogravimetric data[J]. J Chem Soc Jpn, 1965, 38(11): 1881–1886.
[18] FLYNN J, WALL L. A quick, direct method for the determination of activation energy from thermogravimetric data [J]. Polym Lett, 1966, 4: 323–328.
[19] CHEN X L, YU J, GUO S Y. Thermal oxidative degradation kinetics of PP and PP/Mg(OH)2 flame–retardant composites[J]. J Appl Polym Sci, 2007, 103(3): 1978–1984.
[20] EVERSON K, DENG H M, WANG D Y, et al. Thermal stability and degradation kinetics of poly(methyl methacrylate)/ layered copper hydroxy methacrylate composites[J]. Polym Adv Technol, 2006, 17(4): 312–319.
[21] DOLLOMORE D, TONG P, ALEXANDER K S. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation[J]. Thermochim Acta, 1996, 282/283(1): 13–27.
|