首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
掺CaCO3粉及后续水养护对CO2养护混凝土的强度和显微结构影响
作者:涂贞军1 3 史才军1 2 何平平3 潘智生3 
单位:1. 湖南大学土木工程学院 长沙 410082 2. 绿色建材国家重点实验室 中国建材科学研究总院 北京 100024  
关键词:碳酸钙粉 二氧化碳养护 后续水养护 微观结构 钙矾石 
分类号:
出版年,卷(期):页码:2016,44(8):0-0
DOI:10.14062/j.issn.0454-5648.2016.08.06
摘要:

研究了掺CaCO3粉及后续水养护对CO2养护混凝土的强度的影响。采用X射线衍射和热重方法分析了两者对CO2养护后反应产物的影响,同时采用扫描电子显微镜观察了掺CaCO3粉及后续水养护对混凝土微观结构的影响,并用能谱仪对微区元素进行了表征。结果表明:当剩余水灰比为0.18时,掺10% CaCO3粉混凝土CO2养护及后续水养护后的抗压强度均达到最大值。与未掺时相比,掺10% CaCO3粉可提高混凝土CO2养护及后续水养护7 d的抗压强度,但后续水养护28 d的抗压强度略有降低。由于CO2养护后还存在未与CO2反应的水泥颗粒,后续水养护可进一步提高CO2养护混凝土的强度,反应生成的碳酸钙的结晶程度也有所提高。在后续水养护过程中,CaCO3粉作为晶核促进钙矾石的散射状生长。
 

cialis discount coupons coupons for cialis 2016 cialis 2015 coupon

The effects of CaCO3 powder and subsequent water curing on the compressive strength of CO2-cured concrete were investigated. The reaction products of concrete after CO2 curing were determined by X-ray diffraction and thermogravimetry/differential thermogravimetry, and the microstructure changes of concrete after incorporating CaCO3 powder and/or after subsequent water curing were characterized by scanning electron microscopy affiliated with energy dispersive X-ray spectroscopy. The results show that when the residual water-cement ratio is 0.18, the compressive strength of concrete after CO2 curing and subsequent water curing reaches the maximum value. Compared to the concrete without CaCO3 powder, incorporating 10% CaCO3 powder increases the compressive strength of concretes after both CO2 curing and 7 d subsequent water curing, but slightly decreases the compressive strength of concrete after 28 d subsequent water curing. During the subsequent water curing, the strength of the CO2-cured concretes increases continuously with time due to the CO2-cured concrete with some unreacted cement. The crystallization degree of the produced carbonates also increases. In addition, the CaCO3 powder, as crystal nucleus, promotes the formation of ettringite.
 

基金项目:
高等学校博士学科点专项科研基金20130161110019和香港理工大学可持续城市发展研究院资助。
作者简介:
涂贞军(1986—),男,博士研究生。
参考文献:

[1] GISLASON S R, WOLFF-BOENISCH D, STEFANSSON A, et al., Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project [J]. Int J Greenhouse Gas Control, 2010. 4(3): 537–545.
[2] YOUNG J F , BERGER R L, BREESE J, Accelerated curing of compacted calcium silicate mortars on exposure to CO2 [J]. J Am Ceram Soc, 1974, 57(9): 394–397.
[3] ERGER R L, YOUNG J F, LEUNG K, Acceleration of hydration of calcium silicates by carbon-dioxide treatment [J]. Nat Phys Sci, 1972, 240: 16–18.
[4] ERGER R L, KLEMM W A. Accelerated curing of cementitious systems by carbon dioxide: Part II. Hydraulic calcium silicates and aluminates[J]. Cem Concr Res, 1972, 2(6): 647–652.
[5] KLEMM W A, BERGER R L. Accelerated curing of cementitious systems by carbon dioxide:Part I. Portland cement[J]. Cem Concr Res, 1972, 2(5): 567–576.
[6] SHI C, WANG D, HE F, et al., Weathering properties of CO2-cured concrete blocks[J]. Resour Conserv Recycl, 2012, 65: 11–17.
[7] SHI C, LIU M, HE P, et al., Factors affecting kinetics of CO2 curing of concrete[J]. J Sustainable Cement-Based Mater, 2012, 1(1/2): 24–33.
[8] SHI C, HE F, WU Y. Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures[J]. Constr Build Mater, 2012, 26(1): 257–267.
[9] SHI C, HE F, Properties and Microstructure of CO2 Cured Concrete Blocks[C]//2nd International Conference on Waste Engineering and Management. 2010: 96–107.
[10] 邹庆焱, 史才军, 郑克仁, 等. 预养护对砌块混凝土二氧化碳养护的影响[J]. 建筑材料学报, 2008, 11(1): 116–120.
ZOU QINYAN, SHI CAIJUN, ZHEN KEREN, et al. Effect of pre-conditioning on CO2 curing of block concretes[J]. J Chin Ceram Soc, 2008, 11(1): 116–120.
[11] SHI C , WU Y, Studies on some factors affecting CO2 curing of lightweight concrete products[J]. Resour Conserv Recycl, 2008, 52(8/9): 1087–1092.
[12] 史才军, 何平平, 涂贞军, 等. 预养护对CO2养护混凝土过程及显微结构的影响[J]. 硅酸盐学报, 2014, 42(8): 996–1004.
SHI CAIJUN, HE PINGPING, TU ZHENJUN, et al. Effects of pre-conditioning on process and microstrucutre of carbon dioxide cured concrete [J]. J Chin Ceram Soc, 2014, 42(8): 996–1004.
[13] SHAO Y, ROSTAMI V, HE Z, et al., Accelerated carbonation of Portland limestone cement[J]. J Mater Civ Eng, 2013, 26(1): 117–124.
[14] EL-HASSAN H, SHAO Y. Early carbonation curing of concrete masonry units with Portland limestone cement[J]. Cem Concr Compos, 2015.
[15] PLIYA P, CREE D, Limestone derived eggshell powder as a replacement in Portland cement mortar[J]. Constr. Build. Mater., 2015, 95: 1–9.
[16] LOTHENBACH B,LE SAOUT G, GALLUCCI E, et al. Influence of limestone on the hydration of Portland cements[J]. Cem Concr Res, 2008, 38: 848–860.
[17] KAKALI G, TSIVILIS S, AGGELI E. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3[J]. Cem Concr Res, 2000, 30: 1073–1077.
[18] MORANDEAU A, THIÉRY M, DANGLA P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties[J]. Cem Concr Res, 2014, 56: 153–170.
[19] THIÉRY M, FAURE P, MORANDEAU A, et al. Effect of carbonation on the microstructure and moisture properties of cement-based materials.//12th International Conference on Building Materials and Components. 2011.
[20] SHORT N, PURNELL P, PAGE C, Preliminary investigations into the supercritical carbonation of cement pastes[J]. J Mater Sci, 2001, 36(1): 35–41.
[21] GOTO S, SUENAGA K, KADO T, et al., Calcium silicate carbonation products[J]. J Am Ceram Soc, 1995, 78(11): 2867–2872.
[22] PIZZOL V, MENDES L, SAVASTANO H, et al. Mineralogical and microstructural changes promoted by accelerated carbonation and ageing cycles of hybrid fiber–cement composites[J]. Constr Build Mater, 2014, 68: 750–756.
[23] ROSTAMI V, SHAO Y, BOYD A, et al. Microstructure of cement paste subject to early carbonation curing[J]. Cem Concr Res, 2012, 42(1): 186–193.
[24] CHANG J, FANG Y. Quantitative analysis of accelerated carbonation products of the synthetic calcium silicate hydrate (C–S–H) by QXRD and TG/MS[J]. J Therm Anal Calorim, 2015, 119(1): 57–62.
[25] THIERY M, DANGLA P, BELIN P, et al. Carbonation kinetics of a bed of recycled concrete aggregates: a laboratory study on model materials[J]. Cem Concr Res, 2013, 46: 50–65.
[26] MITCHELL D, HINCZAK I, DAY R. Interaction of silica fume with calcium hydroxide solutions and hydrated cement pastes[J]. Cem Concr Res, 1998, 28(11): 1571–1584.
[27] TSIVILIS S, KAKALI G, CHANIOTAKIS E, et al. A study on the hydration of Portland limestone cement by means of TG[J]. J Therm Anal Calorim, 1998, 52(3): 863–870.
[28] PHUNG Q T, MAES N, JACQUES D, et al., Effect of limestone fillers on microstructure and permeability due to carbonation of cement pastes under controlled CO2 pressure conditions[J]. Constr Build Mater, 2015, 82(0): 376–390.
[29] EL-HASSAN H, SHAO Y, GHOULEH Z. Reaction Products in Carbonation-Cured Lightweight Concrete[J]. J Mater Civ Eng, 2013, 36: 799–809.
[30] SEVELSTED T F , SKIBSTED J. Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy[J]. Cem Concr Res, 2015, 71: 56–65.
[31] 史才军, 邹庆焱, 何富强. 二氧化碳养护混凝土的动力学研究[J]. 硅酸盐学报, 2010, 38(7): 1179–1184.
SHI CAIJUN, ZOU QINYAN, HE FUQIANG. Study on CO2 curing kinetices of concrete[J]. J Chin Ceram Soc, 2010, 38(7): 1179–1184.
[32] MATSCHEI T, LOTHENBACH B, GLASSER F P, The role of calcium carbonate in cement hydration[J]. Cem Concr Res, 2007, 37: 551–558.
[33] SHAO Y , MIRZA M S. CO2 sequestration using calcium-silicate concrete[J]. Can J Civ Eng, 2006, 33: 776–784.
[34] 常钧, SANWU W, SHAO Y. 用碳化养护电弧熔炉钢渣制备集料和混凝土[J]. 硅酸盐学报, 2007, 35(9): 1264–1269.
CHANG JUN, SANWU W, SHAO Y. J Chin Ceram Soc, 2007, 35(9): 1264–1269.
[35] KOMATSU R, MIZUKOSHI N, MAKIDA K, et al. In-situ observation of ettringite crystals[J]. J Cryst Growth, 2009, 311(3): 1005–1008.
[36] THIERY M, VILLAIN G, DANGLA P, et al., Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics[J]. Cem Concr Res, 2007, 37(7): 1047–1058.
[37] KASHEF-HAGHIGHI S, SHAO Y, GHOSHAL S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cem Concr Res, 2015, 67(0): 1–10.
[38] HEBERLING F, BOSBACH D, ECKHARDT J, et al., Reactivity of the calcite–water-interface, from molecular scale processes to geochemical engineering[J]. Appl Geochem, 2014, 45(0): 158–190.
[39] DE YOREO J J, VEKILOV P G. Principles of crystal nucleation and growth[J]. Rev Mineral Geochem, 2003, 54(1): 57–93.
 

doxycycline doxycycline doxycycline
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com