摘要:
|
通过柠檬酸络合法合成了LaxSr2–xMgMoO6–δ (LSMM)阳极材料。利用X射线衍射和扫描电子显微镜分析样品的物相结构、微观形貌及与电解质的化学相容性,采用四端引线法测试材料的电导率,利用电化学工作站测试其阳极阻抗特性,并以La0.8Sr0.2Ga0.8Mg0.2O3(LSGM)为电解质、PrBaCo2O5+δ为阴极制备了单电池,测试功率密度。结果表明:空气中La的掺杂量小于0.2(摩尔分数)时,还原后La的掺杂量可以达到0.6,La的掺杂导致晶胞体积增大。La掺杂的Sr2MgMoO6(SMMO)与电解质LSGM、Ce0.8Gd0.2O2–δ(GDC)在1 250 ℃煅烧10 h,均没有杂质相生成,具有良好的化学相容性。La掺杂显著提高了SMMO的电导率,800 ℃、5%H2/Ar气氛中,La0.6Sr1.4MgMoO6–δ的电导率为40 S/cm。La的掺杂降低了阳极材料的极化电阻,提高了电池功率密度。
bystolic copay card bystolic coupon voucher
|
LaxSr2–xMgMoO6–δ (LSMM) anode material was synthesized via a citrate acid complexing method. The phase composition was determined by X-ray diffraction, and the microstructure of the sintered samples was determined by scanning electron microscopy. The electrical conductivity of all samples was measured by a standard four-terminal dc method, and the AC electrochemical impedance spectra were detected in a symmetrical cell. Single fuel cells were prepared using an electrolyte-supported technique with La0.8Sr0.2Ga0.8Mg0.2O3(LSGM) as an electrolyte, LSMM as an anode and PrBaCo2O5+δ as a cathode. The results demonstrate that the doping limit of La is less than 0.2 in air, which is 0.6 after reducing in 5%H2/Ar. The doping leads to the increase of cell volume of LSMM. The LSMM anode material has a good chemical compatibility with GDC and LSGM electrolytes after calcining at 1 250 ℃ for 10 h. The La doping increases the electronic conductivity of La0.6Sr1.4MgMoO6–δ, which is 40 S/cm at 800 ℃ in 5%H2/Ar, and decreases the polarization resistance, resulting in the improvement of power density for single cells.
|
基金项目:
|
国家自然科学基金(51402136, 51402135)和江西省自然科学基金(20142BAB216007, 20142BAB216006)资助。
|
作者简介:
|
谢志翔(1982—),男,博士,讲师。
|
参考文献:
|
[1] JIANG S P, YE Y, HE T, et al. Nanostructured palladium La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells [J]. J Power Sources, 2008, 185(1): 179–182.
[2] 韩敏芳, 彭苏萍. 固体氧化物燃料电池材料及制备[M]. 北京: 科学出版社, 2004.
[3] KIM P, BRETT D J L, BRANDON N P. The effect of water content on the electrochemical impedance response and microstructure of Ni–CGO anodes for solid oxide fuel cells[J]. J Power Sources, 2009, 189(2): 1060–1065.
[4] AI N, Lü Z, TANG J, et al. Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer[J]. J Power Sources, 2008, 185(1): 153–158.
[5] CLEMMER R M C, CORBIN S F. The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications[J]. Solid State Ionics, 2009, 180(9/10): 721–730.
[6] LOHSOONTORN P, BRETT D J L, BRANDON N P. The effect of fuel composition and temperature on the interaction of H2S with nickel–ceria anodes for Solid Oxide Fuel Cells[J]. J Power Sources, 2008, 183(1): 232–239.
[7] DING D, LI L, FENG K, et al. High performance Ni–Sm2O3 cermet anodes for intermediate temperature solid oxide fuel cells[J]. J Power Sources, 2009, 187(2): 400–402.
[8] HERNADI K, FONSECA A, NAGY J B, et al. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds[J]. Appl Catal A, 2000, 199(2): 245–255.
[9] KOH J H, YOO Y S, PARK J W, et al. Carbon deposition and cell performance of Ni–YSZ anode support SOFC with methane fuel[J]. Solid State Ionics, 2002, 149(3/4): 157–166.
[10] HUANG Y H, DASS R I, XING Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006, 312(5771): 254–257.
[11] HUANG Y H, DASS R I, DENYSZYN J C, et al. Synthesis and characterization of Sr2MgMoO6–δ an anode material for the solid oxide fuel cell[J]. J Electrochem Soc, 2006, 153(7): A1266–A1272.
[12] JI Y, HUANG Y H, YING J R, et al. Electrochemical performance of La-doped Sr2MgMoO6–δ in natural gas[J]. Electrochem Commun, 2007, 9(8): 1881–1885.
[13] MARRERO–LOPEZ D, PENA–MARTINEZ J, RUIZ–MORALES J C, et al. High temperature phase transition in SOFC anodes based on Sr2MgMoO6–δ[J]. J Solid State Chem, 2009, 182(5): 1027–1034.
[14] BERNUY–LOPEZ C, ALLIX M, BRIDGES C A, et al. Sr2MgMoO6–δ: Structure, phase stability, and cation site order control of reduction[J]. Chem Mater, 2007, 19(5): 1035–1043.
[15] VASALA S, LETHIMAKI M, HUANG Y H, et al. Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6–δ (M=Mg, Mn, Fe, Co, Ni, Zn)[J]. J Solid State Chem, 2010, 183(5): 1007–1021.
[16] SHANNON, R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Cryst, 1976, 32(5): 751–767.
[17] BALCELLS L I, NAVARRO J, BIBES M, et al. Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite[J]. Appl Phys Lett, 2001(6), 78: 781–783.
[18] GARCIA-HERNANDEZ M, MARTINEZ J L, MARTINEZ-LOPE M J, et al. Finding universal correlations between cationic disorder and low field magnetoresistance in Fe/Mo double perovskite series[J]. Phys Rev Lett, 2001, 86(11): 2443–2446.
[19] ZHANG L L, HE T M. Performance of double-perovskite Sr2–xSmxMgMoO6–δ as solid-oxide fuel-cell anodes[J]. J Power Sources, 2011, 196(20): 8352–8359.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|