首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
红外Ga2S3–Sb2S3硫系玻璃的热稳定性及光学性能
作者:李戈1 徐铁峰2 3 戴世勋2 3 张腾宇1 张勤远4 焦清2 3 
单位:1. 宁波大学信息科学与工程学院 浙江 宁波 315211 2. 宁波大学高等技术研究院 浙江 宁波 315211 3. 浙江省光电探测材料及器件重点实验室 浙江 宁波 315211 4. 华南理工大学发光材料与器件国家重点实验室 广州 510640 
关键词:硫系玻璃 红外光学 光学特性 镓含量 玻璃结构 
分类号:TN213
出版年,卷(期):页码:2016,44(6):830-835
DOI:10.14062/j.issn.0454-5648.2016.06.08
摘要:
采用真空熔融淬冷法制备Ga??Sb40–??S60硫系玻璃样品,并通过Archimedes法、X射线衍射、热膨胀系数分析、可见/近红外光谱吸收度与透过率、中远红外光谱透过率以及Raman散射光谱等研究了硫系玻璃样品的结构、热稳定性和光学性能。结果表明:随着Ga含量的增加,玻璃密度逐渐下降,玻璃转变温度逐渐提高,热膨胀系数不断减小,表明玻璃具有良好的热稳定性;玻璃的可见/近红外短波截止边均发生蓝移,光学带隙增大,而且保持了良好的红外透过率,其较宽的红外透过范围(0.8~14.0 μm),涵盖了目前3大主要通信波段和热红外波段,Ga–Sb–S玻璃已成为极具前景的红外材料。Ga含量增加促进[GaS4]四面体的形成,减少[SbS3]三角锥的比例,归纳了该类硫系玻璃的光学性质与结构的依赖关系。
printable coupons for cialis outbackuav.com coupon for free cialis
abortion pill abortion pill abortion pill
sumatriptan side effects sumatriptan side effects sumatriptan side effects
Series of Ga??Sb40–??S60 chalcogenide glasses were synthesized by a melt-quenching method. The thermal and optical properties of sample glasses were determined by the Archimedes principle, X-ray diffraction, thermal expansion, ultra violet–visible–near infrared absorption spectroscopy, and Fourier transform infrared spectroscopy, respectively. The structures of the samples with different compositions were analyzed by Raman spectroscopy. The results show that all of the glasses have good thermal stability and spectral properties. The density decreases slightly, the glass transition temperature improves, and the thermal expansion coefficient reduces with increasing the content of gallium. Besides, there is a slightly augmentation of optic band gap and a regularly blue-shifted of IR absorption cutting-off edge. Since all of the chalcogenide glasses have a high transmittance in a wide spectrum range of 0.8–14.0 μm (covering three main commutation bands and thermal infrared band), they are thus a promising material for mid-infrared application. According to the Raman spectra, the formation of [GaS4] tetrahedral units promote and the [SbS3] pyramid units suppress with the increase of gallium content. The relationship between optical properties and the structure in the chalcogenide glasses was summarized.
amoxicillin amoxicillin amoxicillin
基金项目:
国家自然科学基金重点项目(61435009);宁波自然科学基金(2015A610079);发光材料与器件国家重点实验室开放课题(2016–skllmd–11)资助。
作者简介:
李 戈(1991—),男,硕士研究生。
cialis coupon cialis coupon cialis coupon
参考文献:
[1] 陈光华, 王印月, 张仿清, 等. 非晶态硫系化合物半导体的制备和电导特性的研究[J]. 物理, 1980, 9(6): 502–503. CHEN Guanghua, WANG Yinyue, ZHANG Fangqing, et al. J Phys(in Chinese), 1980, 9(6): 502–503. [2] 封松林, 宋志棠, 刘波, 等. 硫系化合物随机存储器研究进展[J]. 微纳电子技术, 2004, 41(4): 1–7. FENG Songyue, SONG Zhitang, LIU Bo, et al. J Micronanoelectron Technol(in Chinese), 2004, 41(4): 1–7. [3] JUDD B. Optical absorption intensities of rare-earth ions[J]. Phys Rev, 1962, 127(3): 750–761. [4] OFELT G. Intensities of crystal spectra of rare-earth ions[J]. J Chem Phys, 1962, 37(3): 511–520. [5] 王恕, 梁振华. 非氧化物玻璃形成能力的化学键方法[J]. 硅酸盐学报, 2001, 20(2): 17–22. WANG Shu, LIANG Zhenhua. J Chin Ceram Soc, 2001, 20(2): 17–22. [6] FRERICHS R. New optical glasses with good transparency in the infrared[J]. JOSA, 1953, 43(12): 1153–1157. [7] CHURBANOV M, SNOPATIN G, SHIRYAEV V, et al. Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics[J]. J Non-Cryst Solids, 2011, 357(11): 2352–2357. [8] HEO J. Optical characteristics of rare-earth-doped sulphide glasses[J]. J Mater Sci Lett, 1995, 14(14): 1014–1016. [9] SHEPHARD J, KANGLEY R, HAND R, et al. The effect of GaSe on Ga–La–S glasses[J]. J Non-Cryst Solids, 2003, 326: 439–445. [10] SCHWEIZER T. Rare-earth-doped gallium lanthanum sulphide glasses for mid-infrared fibre lasers[D]. Southampton: University of Southampton, 2000. [11] LI R, FURNISS D, BAGSHAW H, et al. The decisive role of oxide content in the formation and crystallization of gallium–lanthanum– sulfide glasses[J]. J Mater Res, 1999, 14(6): 2621–2627. [12] MORGAN S, FURNISS D, SEDDON A, et al. Effect of glass purity on the glass stability and physical properties of Ga–La–S glasses[J]. J Non-Cryst Solids, 1997, 213: 72–78. [13] LI Ruihua, ANGELA B. Seddon Gallium–lanthanum–sulphide glasses: a review of recent crystallization studies[J]. J Non-Cryst Solids, 1999, 256: 17–24. [14] QU G, ZHAI S, XU Y, et al. The effect of PbS on crystallization behavior of GeS2–Ga2S3–based chalcogenide glasses[J]. J Am Ceram Soc, 2014, 97(11): 3469–3474. [15] LIN C, QU G, LI Z, et al. Correlation between crystallization behavior and network structure in GeS2–Ga2S3–CsI chalcogenide glasses[J]. J Am Ceram Soc, 2013, 96(6): 1779–1782. [16] CHARPENTIER F, STARECKI F, DOUALAN J L, et al. Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers[J]. Mater Lett, 2013, 101: 21–24. [17] XU W, REN J, CHEN G. Glass transition kinetics and crystallization mechanism in Ge–Ga–S–CsCl chalcohalide glasses[J]. J Non-Cryst Solids, 2014, 398: 42–47. [18] TROLES J, Niu Y, DUVERGER–ARFUSO C, et al. Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm[J]. Mater Res Bull, 2008, 43(4): 976–982. [19] SAVAGE J, NIELSEN S. Chalcogenide glasses transmitting in the infrared between 1 and 20 μm–A state of the art review[J]. Infrared Phys, 1965, 5(4): 195–204. [20] SAVAGE J A. Optical properties of chalcogenide glasses[J]. J Non-Cryst Solids, 1982, 47(1): 101–115. [21] ZHANG M, YANG A, PENG Y, et al. Dy3+-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers[J]. Mater Res Bull, 2015, 70: 55–59. [22] KOUDELKA L, FRUMAR M, PISáR?IK M. Raman spectra of Ge–Sb–S system glasses in the S-rich region[J]. J Non-Cryst Solids, 1980, 41(2): 171–178. [23] Benazeth S, Tuilier M, Loireau–Lozac'h A, et al. An EXAFS structural approach of the lanthanum–gallium–sulfur glasses[J]. J Non-Cryst Solids, 1989, 110(1): 89–100. [24] 郭海涛, 陈红燕, 陆敏, 等. 基于Raman光谱的GeS2–Sb2S3–CdS硫系玻璃结构研究[J]. 硅酸盐学报, 2010, (11): 2110–2115. GUO Haitao, CHEN Hongyan, LU Min, et al. J Chin Ceram Soc, 2010(11): 2110–2115. [25] WILHELM A. New tellurium based glasses for use in bio-sensing applications[C]//SPIE Photonics West 2007, San Jose, American, 2007: 64330U (1–8). [26] OVSHINSKY S R. Localized States in the Gap of Amorphous Semiconductors[M]. New York: Springer US, 1991: 41–44. [27] XIA F, Baccaro S, ZHAO D, et al. Gamma ray irradiation induced optical band gap variations in chalcogenide glasses[J]. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms, 2005, 234(4): 525–532. [28] MOTT N F, EA Davis, K Weiser. Electronic processes in non-crystalline materials[M]. Oxford: Oxford University Press, 1979: 445–469. [29] 许彦涛, 郭海涛, 闫兴涛, 等. 低损耗As–S玻璃光纤的制备与应用研究[J]. 无机材料学报, 2014, 30(1): 97–101. XU Yantao, GUO Haitao, YAN Xingtao, et al. J Inorg Mater(in Chinese), 2014, 30(1): 97–101. [30] 徐会娟. 低损耗硫系玻璃光纤制备的关键技术研究[D]. 宁波: 宁波大学, 2014. XU Huijuan. Research on the key technology of low loss chalcogenide glass fibers fabrication(in Chinese, dissertation). Ningbo: Ningbo University, 2014.
cialis coupon cialis coupon cialis coupon
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com