摘要:
|
利用BaZrO3坩埚结合感应加热技术熔炼钛合金,通过光学显微镜、扫描电子显微镜、X射线衍射仪以及原子发射光谱仪等分析了BaZrO3耐火材料与熔体接触后微观形貌变化及BaZrO3耐火材料与合金之间的相互熔解量,研究了BaZrO3耐火材料与熔体界面的反应、组成元素在熔体中熔解量随接触时间变化规律及与钛熔体界面反应机理。结果表明:熔炼低含钛量的钛合金,BaZrO3耐火材料渗透层厚度约为20 μm,随着BaZrO3耐火材料与熔体接触时间增加,氧元素在熔体中熔解量逐渐降低,锆含量则并未出现明显变化,说明BaZrO3耐火材料不与钛熔体发生界面反应;熔炼高含钛量钛合金时,BaZrO3耐火材料侵蚀层厚度约为2 000 μm,锆和氧在熔体中熔解量逐渐升高,说明高钛含量熔体与BaZrO3耐火材料发生界面反应,反应过程中有BaO生成。
|
Titanium alloy was melted in a BaZrO3 crucible by an induction melting process. The microstructure of BaZrO3 refractory and the mutual dissolution after melted at different time were analyzed by optical microscopy, scanning electron microscopy, X-ray diffraction and atomic emission spectrometry, respectively. The interfacial reaction between titanium melt and BaZrO3 refractory and the dissolve behavior of BaZrO3 at different time were investigated. The results show that the thickness of BaZrO3 refractory permeable layer is approximately 20 μm after melting a low-titanium content alloy. The oxygen content reduces and the zirconium content does not change when BaZrO3 refractory contacts with the time, indicating that the BaZrO3 refractory does not react with titanium melt. Meanwhile, the thickness of BaZrO3 refractory erosion layer is approximately 2 000 μm after melting a high-titanium content alloy. The oxygen and zirconium contents increase with increasing the contact time, showing that the BaZrO3 refractory reacts with titanium melt and BaO appears during the melting process.
|
基金项目:
|
国家自然科学基金(51225401,51374142);国家“973”计划(2014CB643403);上海市科委基金(14JC1491400)资助。
|
作者简介:
|
陈光耀(1987—),男,博士研究生。
|
参考文献:
|
[1] LUTJERING G, WILLIAMS J C. Titanium[M]. Berlin: Springer, 2007: 1–2.
[2] KROLL W. The production of ductile titanium[J].Trans Electrochem Soc, 1940, 78(1): 35–47.
[3] FRENZELJ, ZHANG Z, NEUKING K, et al. High quality vacuum induction melting of small quantities of niti shape memory alloys in graphite crucibles[J]. J Alloy Compd, 2004, 385(1): 214–223.
[4] ZHANG Z H, FRENZEL J, NEUKING K, et al. Acta Mater, 2005, 53(14): 3971–3985.
[5] 张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005: 21–24.
[6] GOMES F, BARBOSA J, RIBEIRO C S. Induction melting of γ-TiAl in CaO crucibles[J]. Intermetallics, 2008, 16: 1292–1297.
[7] TETSUI T, KOBAYASHI T, MORI T, et al. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy[J]. Mater Trans, 2010, 51(9): 1656–1662.
[8] 张蔷, 周星, 刘宏葆. BN与TiNi系合金熔体的界面反应[J].上海大学学报,2008(5): 537–540
ZHANG Qiang, ZHOU Xing, LIU Hongbao. J Shanghai Univ(in Chinese), 2008(5): 537–540.
[9] FARAN E, GOTMAN I, GUTMANAS E Y. Experimental study of the reaction zone at boron nitride ceramic–Ti metal interface[J]. Mat Sci Eng: A, 2000, 288(1): 66–74.
[10] KUANG J P, HARDING R A, CAMPBELL J. A study of refractories as crucible and mould materials for melting and casting γ-TiAl alloys[J]. Int J Cast Metals Res, 2001, 13: 277–292.
[11] L?KEN A, KJ?LSETH C, HAUGSRUD R. Electrical conductivity and TG–DSC study of hydration of Sc-doped CaSnO3 and CaZrO3[J]. Solid State Ionics, 2014, 267: 61–67.
[12] 凌继栋. 锆酸钙耐火材料简介[J], 硅酸盐通报, 1986, 5(3): 26–30.
LING Jidong. Bull Chin Ceram Soc(in Chinese), 1986, 5(3): 26–30.
[13] BOHN H G, SCHOBER T. Electrical conductivity of the high-temperature proton conductor BaZr0.90Y0.10O2.95 [J]. J Am Ceram Soc, 2000, 83(4): 768–772.
[14] MACMANUS–DRISCOLL J L, FOLTYNL S R, JIA Q X, et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–X+BaZrO3 [J]. Nat Mater, 2004, 3(7): 439–443.
[15] SCHAFF?NER S, ANEZIRIS C G, BEREK H, et al. Investigating the corrosion resistance of calcium zirconate in contact with titanium alloy melts[J]. J Eur Ceram Soc, 2015, 35(1): 259–266.
[16] SCHAFF?NER S, ANEZIRIS C G, BEREK H, et al. Corrosion behavior of calcium zirconate refractories in contact with titanium aluminide melts[J]. J Eur Ceram Soc, 2015, 35(35): 1097–1106.
[17] 贺进, 魏超, 李明阳, 等. BaZrO3 耐火材料与TiAl 合金熔体的界面反应[J]. 中国有色金属学报, 2015, 25(6): 1505–1511.
HE Jin, WEI Chao, LI Mingyang, et al.Trans Nonferrous Met Soc China(in Chinese), 2015, 6(25): 1505–1511.
[18] 张钊, 朱凯亮, 刘岚洁, 等. BaZrO3坩埚的制备及与钛合金熔体的界面反应[J]. 硅酸盐学报, 2013, 41(9): 1272?1283.
ZHANG Zhao, ZHU Kailiang, LIU Lanjie, et al. J Chin Cream Soc, 2013, 41(9): 1272–1283.
[19] KOSTOV A, FRIEDRICH B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys[J]. Comp Mater Sci, 2006, 38(2): 374–385.
[20] 苏彦庆, 贾均, 郭景杰, 等. Ti–Al 二元系活度计算[J]. 铸造, 1998 (1): 17–20.
SU Yanqing, JIA Jun, GUO Jingjie, et al. Foundry(in Chinese), 1998(1): 17–20.
[21] 顾少轩, 赵修建, 胡军. 陶瓷的腐蚀行为和腐蚀机理研究进展[J]. 材料导报, 2002, 16(6): 42–44.
Gu Shaoxuan, Zhao Xiujian, Hu Jun. Mater Rev(in Chinese), 2002, 16(6): 42–44.
[22] CUI R J, GAO M, ZHANG H. Interaction between TiAl alloys and yttria refractory material in casting process[J]. Mater Process Technol, 2010, 9: 1190–1196.
[23] LIN K F, LIN C C. Interfacial reactions between Ti6Al4V alloy and zirconia mold during casting[J]. J Mater Sci, 1999, 34(23): 5899–5906.
[24] ECONOMOS G, KINGERY W D. Metal–ceramic interactions: II, metal–oxide interfacial reactions at elevated temperatures [J]. J Am Ceram Soc, 1953, 36(12): 403–409.
[25] KATO S, IGUCHI Y, BAN-YA S. Deoxidation equilibrium of liquid iron with barium[J]. Tetsu-to-Hagane, 1992, 78(2): 253–259.
[26] SUSUMU M, MASATOSHI W, TAKAYUKI N, et al. Deoxidation of NiTi alloy melts using metallic barium[J], Mater Trans, 2008, 49(2): 289–293.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|