摘要:
|
结合化学气相渗透工艺(chemical vapor infiltration)与前驱体浸渍裂解(precursor infiltration and pyrolysis, PIP)工艺,制备了C/C–ZrB2–SiC复合材料,并对材料的力学性能和烧蚀性能进行了分析。结果表明:PIP工艺制备的C/C–ZrB2–SiC复合材料的拉伸、弯曲及剪切强度分别为91.2、214和35.8 MPa,优于通过浆料浸渍工艺制备的复合材料。同时,热流3 200 kw/m2,时间600 s的氧乙炔火焰试验表明,PIP工艺制备的C/C–ZrB2–SiC复合材料具有良好的抗氧化烧蚀性能,其线烧蚀率和质量烧蚀率分别为0.002 mm/s和0.7 mg/s。
|
C/C–ZrB2–SiC composites were prepared by combination of chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) process. A mixture of ZrB2 polymeric precursor (PBZ) and polycarbosilane (PCS) was introduced as precursor of ZrB2–SiC matrix. The mechanical properties and ablation properties of the composites were investigated. The results show that the tensile, flexural and shear strengths of the C/C–ZrB2–SiC composites reaches to 91.2, 214, and 35.8 MPa, respectively, higher than that of counterpart prepared by slurry infiltration (SI) process. The ablation behavior of the C/C–ZrB2–SiC composites was studied by oxyacetylene torch test at a heat flux of 3 200 kW/m2 for 600 s. C/C–ZrB2–SiC composites have an average mass ablation rate of 0.002 mm/s and an average linear ablation rate of 0.7 mg/s, which indicate that the composite possesses well resistance to ablation and oxidation.
|
基金项目:
|
国家自然科学基金项目(21206202);重庆市科委自然科学基 金项目(CSTC2013JCYJ5002);重庆市高等学校青年骨干都是 资助计划项目;重庆理工大学研究生创新基金项目 (YCX2014218)。
|
作者简介:
|
张强(1988—),男,硕士研究生。
|
参考文献:
|
[1] STANLEY R L, ELIZABETH J O, MICHAEL C. H, et al. Evaluation of ultra–high temperature ceramics for aeropropulsion use[J]. J Eur Ceram Soc, 2002, (22): 2757–2767.
[2] SCHMIDT, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astron, 2004, 55(319): 409–420.
[3] HU Ping, WANG Zhi. Flexural strength and fracture behavior of ZrB2–SiC ultra–high temperature ceramic composites at 1 800 ℃[J]. J Eur Ceram Soc, 2010, 30(4): 1021–1026.
[4] FAHRENHOHZ W G, HILMAS G E, TALMY I G, et a1. Refractory dibofides of zirconium and hafnium[J]. J Am Ceram Soc, 2007, 90(5):1347–1364.
[5] 童长青, 成来飞, 刘永胜, 等. 2D C/SiC–ZrB2复合材料的烧蚀性能[J]. 航空材料学报, 2012, 32(2): 69–73.
TONG Changqing, CHENG Laifei, LIU Yongsheng, et al. J Aeronaut Mater(in Chinese), 2012, 32(2): 69–73.
[6] HU Haifeng, WANG Qikun, CHEN Zhaohui, et al. Preparation and characterization of C/SiC–ZrB2 composites by precursor infiltration and pyrolysis process[J]. Ceram Int, 2010, 36(3): 1011–1016.
[7] WANG Yiguang, LIU Wen, CHENG Laifei, et al. Preparation and properties of 2D C/ZrB2–SiC ultra–high temperature ceramic composites[J]. Mater Sci Eng A, 2009, 524(1/2): 129–133.
[8] YAN Liansheng, CUI Hong. Carbon cloth reinforced polyarylacetylene ablative materials[J], J Adv Mater, 2007, 39(3): 22–25.
[9] KRISTOFFER K, ZMAGO S, TOMA K. Preparation and properties of C/C–SiC nano–composites[J]. J Eur Ceram Soc, 2007, 27(2): 1211–216.
[10] ODESHI A G, MUCHA H, WIELAGE B. Manufacture and characterisation of a low cost carbon fibre reinforced C/SiC dual matrix composite[J]. Carbon, 2006, 44(10): 1994–2001.
[11] 聂景江, 徐永东, 张立同, 等. 化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能[J]. 硅酸盐学报, 2006, 34(10): 1238–1246.
NI Jingjiang, XU Yongdong, ZHANG litong, et al. J Chin Ceram Soc, 2006, 34(10): 1238–1246.
[12] 王琴, 张强, 柳发成, 等. ZrB2改性C/C–SiC复合材料性能研究[J]. 宇航材料工艺, 2012, 6: 52–55.
WANG Qin, ZHANG Qiang, LIU Facheng, et al. Aeros Mater Tech(in Chinese), 2012, 6: 52–55.
[13] WANG C R, YANG J M, HOFFMAN W. Thermal stability of refractory carbide/boride composites[J]. Mater Chem Phys, 2002, 74(3): 272–281.
[14] OPILA E, LEVINE S. Oxidation of ZrB2– and HfB2–based ultra–high temperature ceramics: Effect of Ta additions[J]. J Mater Sci, 2004, 39(39): 5969–5977.
[15] REZAIE A, FAHRENHOHZ W G, HILMAS G E. Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1 500 ℃[J]. J Eur Ceram Soc, 2007, 27(6): 2495–2501.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|