首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
砷、钾复合中毒选择性催化还原脱硝催化剂的再生
作者:贾勇1 2 周军1 柏家串2 李睦1 王烨1 钟秦3 
单位:1. 中建中环工程有限公司 南京 210008 2. 安徽工业大学能源与环境学院 安徽 马鞍山 243002 3. 南京理工大学化工学院 南京 210094 
关键词:脱硝 钒钨钛催化剂   再生催化剂 
分类号:X 511
出版年,卷(期):页码:2016,44(7):1025-1032
DOI:10.14062/j.issn.0454-5648.2016.07.18
摘要:
依次采用气相和液相浸渍的方法对商用脱硝催化剂V2O5-WO3/TiO2进行模拟砷(As)和碱金属(K)复合中毒处理,以氨水和乙二酸溶液对中毒催化剂进行了联合再生;并对中毒及再生前后的催化剂进行了表征。结果表明:控制氨的浓度为0.001 5 mol/L,乙二酸浓度为0.001 mol/L时,再生催化剂的脱硝率在300~400 ℃范围内可恢复至新催化剂的94.3%~97.4%。采用氨水和乙二酸溶液联合再生可有效去除中毒催化剂表面的As和K,同时再生催化剂的比表面积和表面酸性得到恢复,且再生催化剂表面没有生成新的有害物质。
The commercial denitration catalyst of V2O5-WO3/TiO2 poisoned by arsenic (As) and potassium (K) was prepared by a gas-phase impregnation method and a liquid-phase impregnation method, respectively. The regeneration of denitration catalyst of V2O5-WO3/TiO2 poisoned by As and K with ammonia and oxalic acid solutions was investigated. The structural characteristics of catalysts before and after regeneration were characterized. The results show that the regenerated catalyst regains 94.3%–97.4% at 300–400 ℃ when the ammonia and oxalic acid concentrations are 0.001 5 mol/L and 0.001 mol/L. The As and K on the surface of the poisoned catalysts can be efficiently removed via ammonia and oxalic hybrid regeneration. The specific surface area and the Br?nsted acid sites of poisoned catalysts can be restored effectively. The surface of the regenerated catalyst does not generate any harmful substances.
基金项目:
国家自然科学基金项目(U1162119)。
作者简介:
贾 勇(1981—),男,博士后,讲师。
参考文献:
[1]李远, 沈岳松, 祝社民, 等. 锆掺杂对Ti–Ce–Ox复合氧化物NH3选择性催化还原NO的影响[J]. 硅酸盐学报, 2011, 39(6): 989–994. LI Y, SHEN Y S, ZHU S M, et al. J Chin Ceram Soc, 2011, 39(6): 989–994. [2]LI H Y, ZHANG S L, ZHONG Q. Effect of nitrogen doping on oxygen vacancies of titanium dioxide supported vanadium pentoxide for ammonia-SCR reaction at low temperature[J]. J Colloid Interface Sci, 2013, 402: 190–195. [3]姜烨, 高翔, 吴卫红, 等. 选择性催化还原脱硝催化剂失活研究综述[J]. 中国电机工程学报, 2013, 33(14): 18–31. JIANG Y, GAO X, WU W H, et al.Proc Chin Soc Electrical Eng (in Chinese), 2013, 33(14): 18–31. [4]沈伯雄, 熊丽仙, 刘亭, 等. 纳米负载型V2O5-WO3/TiO2 催化剂碱金属中毒及再生研究[J].燃料化学学报, 2010, 38(1): 85–90. SHEN B X, XIONG L X, LIU T, et al. J Fuel Chem Technol (in Chinese), 2010, 38(1): 85–90. [5]ZHENG Y, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3/TiO2 SCR catalyst at a biomass-fired combined heat and power plant [J]. Appl Catal B, 2005, 60: 253–264. [6]KAMATA H, TANKAHASHI K, ODENBRAND C U I. The role of K2O in the selective of NO with NH3 over a V2O5 (WO3) /TiO2 commercial selective catalytic reduction catalyst [J]. J Mol Catal A, 1999, 139(2/3): 189 –198. [7]KHODAYAR R, ODENBRAND C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants[J]. Appl Catal B, 2001, 30: 87–89. [8]沈伯雄, 熊丽仙, 刘亭. 负载型V2O5-WO3/TiO2催化剂的As中毒研究[J]. 燃料化学学报, 2011, 39(11): 856–859. SHEN B X, XIONG L X, LIU T. J Fuel Chem Technol (in Chinese), 2011, 39(11): 856–859. [9]SHANG X S, HU G R, HE C, et al. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant [J]. J Ind Eng Chem, 2012, 18(1): 513–519. [10]云端, 邓斯理, 宋蔷, 等. V2O5-WO3/TiO2系SCR催化剂的钾中毒及再生方法[J]. 环境科学研究, 2009, 22(6): 730–735. YUN D, DENG S L, SONG Q, et al. Res Environ Sci (in Chinese), 2009, 22(6): 730–735. [11]JAMES E, TONY E, WILLIAM H, et al. The impact of arsenic on coal fired power plants equipped with SCR[C]//Operating Experience for Reducing NOx Emissions. ICAC 2002 Forum, 2002. [12]FRIEDERIKE C L, HELMUT S, HELMUT K. Infrared- spectroscopic investigations of selective catalytic reduction catalysts poisoned with arsenic oxide [J]. Appl Catal B, 1996, 8: 245–265. [13]FRIEDERIKE C L, HELMUT S, HELMUT K. An X-ray photo electron spectroscopy study of oxides of arsenic supported on TiO2 [J]. J Electron Spectrosc, 1991, 57: 307–315. [14]FRANK H, HERBERT E G, HELMUT K, et al. Interaction of arsenious oxide with DeNOx-catalysts: An X-ray absorption and difuse reflectance infrared spectroscopy study [J]. J Catal, 1991, 129: 168–176. [15]NOJIMA S, IIDA K, OBAYASHI Y. Method for the regeneration of a denitration catalyst [P]. US Patent, 6395665 B2. 2002–05–28. [16]陈凯. 一种砷中毒选择性催化还原脱销催化剂的再生方法[P]. CN Patent, 104028316 A. 2014–06–03. CHEN K. A method for regeneration of selective catalytic reduction De-NOx catalysts poisoned by arsenic. CN Patent, 104028316 A. 2014–06–03. [17]PENG Y, LI J H, SI W Z. et al. Insight into deactivation of commercial SCR catalyst by arsenic: an experiment and DFT study [J]. Environ Sci Technol, 2014, 48: 13895?13900. [18]HARTENSTEIN H U, HOFFMANN T. Method of regeneration of SCR catalyst [P]. US, Patent, 7723251. 2010–05–25. [19]OBAYASHI Y, KOYANAGI T, DEMOTO M. Denitrification catalyst regeneration method [P]. US, Patent, 7501106. 2009–03–10. [20]国家环境保护局. GB/T 15503–1995水质–钒的测定-钽试剂(BPHA)萃取分光光度法[S]. 北京: 中国标准出版社, 1995. The State Environmental Protection Agency. GB/T 15503–1995 Water quality-determination of vanadium-BPHA extraction spectrophotometric method [S]. Beijing: Standard Press of China, 1995. [21]杨佳. 工业钛钨粉-SCR催化剂的制备及表征[D]. 重庆: 重庆大学, 2013. YANG Jia. Preparation and characterization of SCR catalyst by industrial titanium tungsten powder (in Chinese, dissertation). Chongqing: Chongqing University, 2013. [22]KHODAYARI R, ODENBRAND C U I. Regeneration of commercial SCR catalysts by washing and sulphation: Effect of sulphate groups on the activity [J]. Appl Catal B, 2001, 33(4): 277–291. [23]HUANG Z, ZHU Z, LIU Z, et al.Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures[J]. J Catal, 2003, 214(2): 213–219, 1051. [24]MA S, NIE R C, WANG Y Y, et al. Influencing factors inphoto-initiation synthesis of polyacrylamide [J]. Speciality Petrochem, 2011, 28(6): 13–16. [25]程华. SCR烟气脱硝催化剂失活原因与再生技术的研究[D]. 广州: 华南理工大学, 2013. CHENG Hua. Study of the deactivation causes and the regeneration methods for commercial V2O5-WO3/TiO2 SCR catalyst(in Chinese, dissertation). Guangzhou: South China University of Technology (in Chinese), 2013. [26]REICHE M A, MACIEJEWSKI M, BAIKER A. Characterization by temperature programmed reduction [J]. Catal Today, 2000, 56: 347–355. [27]TOPSE N Y, TOPSE H, TOPSE J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia: I. Combined temperature- programmed in-situ FTIR and on-line mass -spectroscopy studies[J]. J Catal, 1995, 151(1): 226–240. [28]RASMUSSEN S B, MIKOLAJSKA E, DATURI M, et al. Structural characteristics of an amorphous VPO monolayer on alumina for propane ammoxidation [J]. Catal Today, 2012, 192(1): 96–103. [29]JAMES E, TONY E, WILLIAM H, et al. The impact of arsenic on coal fired power plants equipped with SCR[R]. Andover Technology Partners, 2002: 1–15.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com