摘要:
|
以不饱和聚酯树脂和天然水镁石为原料,采用直接成型技术制备了阻燃聚酯树脂/天然水镁石复合材料。利用锥形量热仪和热重分析仪分析了复合材料的燃烧特性和热分解行为,通过Flynn–Wall–Ozawa动力学方法研究了聚酯树脂及其和天然水镁石复合材料的降解活化能。结果表明:添加质量分数为50%的天然水镁石,可使聚酯树脂的热释放速率降低75%,在促进聚酯树脂分解成炭和改善聚酯树脂热氧稳定性方面具有明显的作用。降解活化能分析表明:转化率在0.1~0.3范围时,聚酯材料的活化能随着水镁石的加入而提高,说明在分解起始阶段水镁石对聚酯树脂分解过程起到阻碍作用;转化率在0.4~0.6范围时,聚酯材料的活化能随着水镁石的加入而下降,说明在分解中间阶段,水镁石和聚酯树脂存在双重分解控制的化学反应,改变了降解模式。
|
Flame–retarded unsaturated polyester resins filled with brucite powders were prepared by direct molding technique. The flammability properties and the thermal oxidative degradation behaviour were studied by cone calorimetric test (CCT) and thermogravimetric analysis (TGA). The Flynn–Wall–Ozawa model–free kinetic method was applied to determine the apparent activation energy (E) for the degradation of pristine polyester and flame–retardant polyester composites. The CCT indicated that the heat release rate (HRR) values decreased 75% when the brucite loading of about 50% of the whole mass. The results of TGA showed that the addition of brucite increased char formation and improved the thermal oxidative stability of polyester resins in air. An incorporation of the brucite powder resulted in a noticeable increase in the activation energy of the obtained composites in the conversion (α) range of 0.1–0.3, which suggested the brucite powder played a hindering role in decomposition of polyester network. A drop in the activation energy of the obtained composites in the conversion (α) range of 0.4–0.6, which suggested the kinetically dominating process was chemical decomposition reaction.
|
基金项目:
|
国家自然基金项目(U1360204,50234040);辽宁省教育厅项 目(L2013089);沈阳理工大学重点实验室开放基金项目。
|
作者简介:
|
李鑫(1980—),女,博士,讲师。
|
参考文献:
|
[1] KANDOLA B K, HORROCKS A R, MYLER P, et al. The effect of intumescents on the burning behaviour of polyester–resin–containing composites[J]. Compos A: Appl Sci Manufac, 2002, 33(6): 805–817.
[2] HOU L X,LIU Y. Structures and properties of organic rectorite/epoxy resin composites[J]. J Chin Ceram Soc (in Chinese), 2011, 39(7): 1223–1228.
[3] EGGLESTONE G T, TURLEY D. Flammability of GRP for use in ship superstructure[J]. Fire Mater, 1994, 18(4): 255–260.
[4] BAYDRY A, DUFAY J, REGNEIR N, et al. Thermal degradation and fire behaviour of unsaturated polyester with chain ends modified by dicyclopentadiene[J]. Polym Degrad Stabil, 1998, 61(3): 441–452.
[5] CHIU H T, CHIU S H, JENG R E, et al. A study of the combustion and fire–retardance behaviour of unsaturated polyester/phenolic resin blends[J]. Polym Degrad Stabil, 2000, 70(3): 505–514.
[6] HU S, SUN W W, CHEN F, et al. Effect of Aluminium hydroxide and α–SiO2 on thermal decomposition of ammonium polyphosphate[J]. J Chin Ceram Soc, 2015, 43(6): 809–816
[7] WALCZAK E K. New ecological polyester resins with reduced flammability and smoke evolution capacity[J]. Polym Degrad Stabil, 1999, 64(3): 39–442.
[8] ATKINSON P, HANIES P J, SKINNERE G A. Inorganic tin compounds as flame retardants and smoke suppressants for polyester thermosets[J]. Thermochim Acta, 2000, 360(1): 29–40.
[9] WALCZAK E K. Kinetics of thermal decomposition of unsaturated polyester resins with reduced flammability[J]. J Appl Polym Sci, 2003, 88(13): 851–2857.
[10] FEMADES J V. Thermogravimetric evaluation of polyester/sisal flame retarded composite[J]. Thermochim Acta, 2002, 392/393(1): 71–77.
[11] YENG F S. Expandable graphite systems for phosphorus–containing unsaturated polyester, 2 kinetic study of degradation process[J]. Macromol Chem Phys, 2005, 206(3): 83–392
[12] YENG F S, RU J J. Thermal degradation behaviour and kinetic analysis of unsaturated polyester–based composites and IPNs by conventional and modulated thermogravimetric analysis[J]. Polym Degrad Stabil, 2006, 91(4): 823–831.
[13] AKTINSON P A, HAINES P J, SKINNER G. Studies of fire– retardant polyester thermosets using thermal methods[J]. J Therm Anal Calorim, 2000, 59(1/2): 95–408.
[14] FENG S F, NING G L, LI X, et al. Ultra–fine and surface– modified of brucite with water[J]. J Func Mater, 2007, 38: 2819–2821,.
[15] YE L, QU B J. Flammability characteristics and flame retardant mechanism of phosphate–intercalate hydrotalcite in halogen–free flame retardant EVA blends[J]. Polym Degrad Stabil, 2008, 93(5): 918–924.
[16] LEONARD J E, BOWDITCH P A, DOWLING V P. Development of a controlled–atmosphere cone calorimeter[J]. Fire Mater, 2000, 24(3): 143–150.
[17] OZAWA T. A new method of analyzing thermogravimetric data[J]. J Chem Soc Jpn, 1965, 38(11): 1881–1886.
[18] FLYNN J, WALL L. A quick, direct method for the determination of activation energy from thermogravimetric data [J]. Polym Lett, 1966, 4: 323–328.
[19] CHEN X L, YU J, GUO S Y. Thermal oxidative degradation kinetics of PP and PP/Mg(OH)2 flame–retardant composites[J]. J Appl Polym Sci, 2007, 103(3): 1978–1984.
[20] EVERSON K, DENG H M, WANG D Y, et al. Thermal stability and degradation kinetics of poly(methyl methacrylate)/ layered copper hydroxy methacrylate composites[J]. Polym Adv Technol, 2006, 17(4): 312–319.
[21] DOLLOMORE D, TONG P, ALEXANDER K S. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation[J]. Thermochim Acta, 1996, 282/283(1): 13–27.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|