首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
晶化温度对V–MCM–41分子筛介孔结构、形貌及性能影响
作者:张强 许俊强 郭芳 王耀琼 
单位:重庆理工大学化学化工学院 重庆 400054 
关键词:介孔分子筛 晶化温度 水热稳定性 苯乙烯催化氧化 
分类号:TQ174.75
出版年,卷(期):页码:2016,44(7):1064-1070
DOI:10.14062/j.issn.0454-5648.2016.07.24
摘要:
采用原位合成水热法制备了掺杂型V–MCM–41介孔分子筛。采用X射线衍射、Fourier变换红外光谱和扫描电子显微镜等研究了晶化温度对V–MCM–41分子筛的介孔结构、形貌和催化性能的影响。结果表明,晶化温度过低或过高时,V–MCM–41介孔分子筛有序度较差;在110 ℃晶化温度下,形成高度有序的六方相介孔结构的介孔分子筛。该分子筛具有球形形貌特征,经水热处理8 d后仍具有介孔特征,比表面积保留率高达80.7%。在苯乙烯催化氧化反应中,V–MCM–41介孔分子筛表现出较优的对苯乙烯催化氧化性能。
Molecular sieve V–MCM–41 with mesoporous structure and good hydrothermal stability was synthesized through in–situ hydrothermal method. Effect of the crystallization temperature on the materials were studied using X–ray diffraction, Fourier transformed infrared spectroscopy and scanning electron microscopy. The results show that the order of V–MCM–41 was poor when the crystallization at extra–low or high temperature. In particular, sample prepared at 110 ℃ for 48 h presents a complete spherical morphology with the ordered hexagonal structure, uniform pore size distribution and large surface area, compared to other samples. Meanwhile, the prepared materials retained the most ordered mesoporous structure and highest texture parameters, and the surface area retention rate of V–MCM–41 was 80.7% even after hydrothermal treatment for 8 d in boiling water. It was due to the polymer silica form resulted in the hydrolyzation and polymerization of Na2O·3.3SiO2 silica sources, which the polymer silica would make strong the reciprocity between the surfactant and silica source. In styrene catalytic oxidation, the catalytic oxidation of styrene showed better catalytic performance.
基金项目:
国家自然科学基金项目(21206202);重庆市科委自然科学基金项目(CSTC2013JCYJ5002);重庆市高等学校青年骨干都是资助计划项目;重庆理工大学研究生创新基金项目 (YCX2014218)。
作者简介:
张强(1988—),男,硕士研究生.
参考文献:
[1] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid–crystal template mechanism[J]. Nature, 1992, 359(6397): 710–712. [2] DA’NA E, SAYARI A. Adsorption of copper on amine–functionalized SBA–15 prepared by co–condensation: equilibrium properties[J]. Chem Eng J, 2011, 166(1): 445–453 [3] JAVADIAN H, TAGHAVI M. Application of novel polypyrrole/thiol–functionalized zeolite beta/MCM–41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies[J]. Appl Surf Scie, 2014, 289(1): 487–494. [4] WANG LY, WANG Y, WANG AJ, et al. Highly acidic mesoporous aluminosilicates assembled from zeolitic subunits generated by controllable desilication of ZSM–5 in Na2SiO3 solution[J]. Micropor Mesopor Mater, 2013, 180(9): 242–249. [5] MARTIN H. Ordered mesoporous materials for bioadsorption and biocatalysis[J]. Chem Mater, 2005, 17(18): 4577– 4593. [6] DEHDASHTIAN S, GHOLIVAND M B, SHAMSIPUR M, et al. A nano sized functionalized mesoporous silica modified carbon paste electrode as a novel, simple, robust and selective anti–diabetic metformin sensor[J]. Sens Actuat B, 2015, 221(3): 807–815. [7] CHEN C H, NJAGI E C, CHEN S Y, et al. Structural distortion of molybdenum–doped manganese oxide octahedral molecular sieves for enhanced catalytic performance[J]. Inorganic Chem, 2015, 54(21): 10163–10171. [8] CLIMENT M J, CORMA A, IBORRA S. Homogeneous and heterogeneous catalysts for multicomponent reactions[J]. RSC Adv, 2012, 2(1): 16–58. [9] MAHDAVI V, MARDANI M. Selective oxidation of benzyl alcohol with tert–butylhydroperoxide catalysed via Mn (II) 2, 2–bipyridine complexes immobilized over the mesoporous hexagonal molecular sieves (HMS)[J]. J Chem Sci, 2012, 124(5): 1107–1115. [10] AGHAEI E, HAGHIGHI M. Effect of crystallization time on properties and catalytic performance of nanostructured SAPO–34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins[J]. Powder Technol, 2015, 269: 358–370. [11] 李冰, 田鹏, 齐越, 张琳, 徐舒涛, 苏雄, 樊栋, 刘中民. SAPO–11分子筛晶化过程研究[J]. 分子催化, 2013, 34(3): 593–603. LI B, TIAN P, QI Y, et al. Chin J Catal(in Chinese), 2013, 34(3): 593–603. [12] 郑淑琴, 黄石, 韩勇, 等. 海泡石原位晶化合成NaY分子筛的晶化动力学过程[J]. 石油学报: 石油加工, 2011, 27(4): 657–661. ZHENG Shuqin, HUANG Shi, HAN Yong, et al. Acta Petrolei Sinica: Petrol Process (in Chinese), 2011, 27(4): 657–661. [13] GIANOTTI E, BERLIER G, COSTABELLO K, et al. In situ synchrotron small–angle X–ray scattering study of MCM–41 crystallisation using Gemini surfactants[J]. Catal Today, 2007, 126(1): 203–210. [14] AWATE S V, JOSHI P N, SHIRALKAR V P, et al. Synthesis and characterization of gallosilicate pentasil (MFI) framework zeolites[J]. J Incl Phenom Macro, 1992, 13(3): 207–218. [15] XU J Q, CHU W, LUO S. Synthesis and characterization of mesoporous V–MCM–41 molecular sieves with good hydrothermal and thermal stability[J]. J Mol Catal A, 2006, 256(S1/2): 48–56. [16] SERRANO D P, PINNAVAIA T J, AGUADO J, et al. Hierarchical ZSM–5 zeolites synthesized by silanization of protozeolitic units: mediating the mesoporosity contribution by changing the organosilane type[J]. Catal Today, 2014, 227(10): 15–25. [17] GIANOTTI E, BERLIER G, COSTABELLO K, et al. In situ synchrotron small–angle X–ray scattering study of MCM–41 crystallisation using Gemini surfactants[J]. Catal Today, 2007, 126(1): 203–210. [18] SANGCHOOM W, MOKAYA R. High temperature synthesis of exceptionally stable pure silica MCM–41 and stabilisation of calcined mesoporous silicas via refluxing in water[J]. J Mater Chem, 2012, 22(36): 18872–18878. [19] XIAO N, WANG L, LIU S, et al. High–temperature synthesis of ordered mesoporous silicas from solo hydrocarbon surfactants and understanding of their synthetic mechanisms[J]. J Mater Chem, 2009, 19(5): 661–665. [20] SHYLESH S, SINGH A P. Vanadium–containing ordered mesoporous silicates: Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V–MCM–41?[J]. J Catal, 2005, 233(2): 359–371. [21] BING L, PENG T, YUE Q, et al. Study of crystallization process of SAPO–11 molecular sieve[J]. Chin J Catal, 2013, 34(3): 593–603. [22] GIANOTTI E, BERLIER G, COSTABELLO K, et al. In situ synchrotron small–angle X–ray scattering study of MCM–41 crystallisation using Gemini surfactants[J]. Catal Today, 2007, 126(1/2): 203–210. [23] WU K, LI B, HAN C, et al. Synthesis, characterization of MCM–41 with high vanadium content in the framework and its catalytic performance on selective oxidation of cyclohexane[J]. Appl Catal A, 2014, 479(6): 70–75.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com