首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
玻璃微珠球化炉流场及粉料球化数值模拟
作者:彭寿 陈淑勇 王芸 彭程 李明九 彭小波 
单位:浮法玻璃新技术国家重点实验室 蚌埠玻璃工业设计研究院 安徽 蚌埠 233000 
关键词:固相粉末法 球化炉 数值模拟 粒子追踪 
分类号:TQ170.6
出版年,卷(期):页码:2016,44(7):1008-1013
DOI:10.14062/j.issn.0454-5648.2016.07.15
摘要:
应用 FLUENT 软件,对固相粉末法制备玻璃微珠的球化炉进行了模拟研究,分析了球化炉内的流场、温度场分布, 并采用离散相模型计算了不同粒径的粉料颗粒在球化炉中的运动轨迹、温度变化情况,发现颗粒加热主要依赖于颗粒与火焰 的对流换热。提出了采用球化指数来表征颗粒的球化程度,分析了不同粒径的粉料颗粒的球化指数分布,发现随着颗粒粒径 增大,颗粒跟随性变差、热惯性增大,导致颗粒球化指数降低。
The beads-forming furnace of solid state powder method for glass sphere producing was simulated by utilizing the commercial FLUENT software to investigate the flow field and temperature distribution in the furnace. The trajectories and temperature evolution of particles with different diameters were simulated by using the discrete phase model. It is found that the heating of particles mainly depends on the convective heat transfer with the flame. Finally, the degree of particle spheroidization was characterized by spheroidizing index. And the distributions of spheroidizing index were analyzed for particles with different diameters. According to the results, the spheroidizing index of the particle is found to be decreased with the increasing of particle diameter, which is due to the decreasing of following behaviors and the increasing of the thermal inertia.
基金项目:
作者简介:
彭 寿(1960—),男,硕士,教授级高工。
参考文献:
[1] 施阳和, 郑华. 球形粉体的制备方法及应用[J]. 中国粉体技术, 2015, 21(4): 71–75. SHI Yanghe, ZHENG Hua. China Powder Sci Technol(in Chinese), 2015, 21(4): 71–75. [2] 杨玉香, 邵谦, 葛圣松. 玻璃微珠的应用研究进展[J]. 中国粉体技 术, 2006, 12(2): 45–48. YANG Yuxiang, SHAO Qian, GE Shengsong. China Powder Sci Technol(in Chinese), 2006, 12(2): 45–48. [3] 彭寿, 王芸, 彭程, 等. 空心玻璃微珠制备方法及应用研究进展[J]. 硅酸盐通报, 2012, 31(6): 1508–1513. PENG Shou, WANG Yun, PENG Cheng, et al. Bull Chin Ceram Soc(in Chinese), 2012, 31(6): 1508–1513. [4] 石成利, 梁忠友, 李春红. 玻璃微珠的制备方法[J]. 山东建材, 2005, 26(1): 33–35. SHI Chengli, LIANG Zhongyou, LI Chunhong. Shandong Build Mater(in Chinese), 2005, 26(1): 33–35. [5] 宋晓睿, 杨辉. 空心玻璃微球制备技术研究进展[J]. 硅酸盐学报, 2012, 40(3): 450–457. SONG Xiaorui, YANG Hui. J Chin Ceram Soc, 2012, 40(3): 450–457. [6] 闫世凯, 胡鹏, 袁方利, 等. 射频等离子体球化 SiO2粉体的研究[J]. 材料工程, 2006(2): 29–33. YAN Shikai, HU Peng, YUAN Fangli. J Mater Eng(in Chinese), 2006(2): 29–33. [7] JIN H, XU L, HOU S. Simulation of flow field and particle spheroidizing process of beads-forming furnace for glass sphere[J]. J Mater Process Technol, 2010, 210(1): 81–84. [8] LU X, ZHU L P, ZHANG B, et al. Simulation of flow field and particle trajectory of radio frequency inductively coupled plasma spheroidization[J]. Comput Mater Sci, 2012, 65: 13–18. [9] 邵宗恒. 高频等离子体球化石英粉的数值模拟研究[D]. 南昌: 华 东交通大学, 2012. SHAO Zongheng. Numerical investigation on spheroidization of silica powders in RF induction plasma(in Chinese, dissertation). Nanchang: East China Jiaotong University, 2012. [10] BORTOT M B, PRASTALO S, PRADO M. Production and characterization of glass microspheres for hepatic cancer treatment[J]. Procedia Mater Sci, 2012, 1: 351–358. [11] RAMASAMY R, SELVARAJAN V. Injected particle behavior in a thermal plasma[J]. Appl Surf Sci, 2001, 169-170: 617–621. [12] 谢峻林, 梅书霞. SLC-S 分解炉增加物料进口时气固两相流场的数 值模拟[J]. 硅酸盐学报, 2007, 35(10): 1382–1386. XIE Junlin, MEI Shuxia. J Chin Ceram Soc, 2007, 35(10): 1382–1386. [13] HAIDER A, LEVENSPIEL O. Drag coefficient and terminal velocity of spherical and nonspherical particles[J]. Powder Technol, 1989, 58(1): 63–70. [14] BIRD R B, STEWART W E, LIGHTFOOT E N. Transport Phenomena[M]. New York: John Wiley & Sons, 2002. [15] NICHIPORENKO O S, NAIDA Y I. Fashioning the shape of sprayed powder particles[J]. Powder Metall Met Ceram, 1968, 7(10): 753–755. [16] 刘文胜, 彭芬, 马运柱, 等. 工艺条件对气雾化制备 SnAgCu 合金 粉末特性的影响[J]. 中国有色金属学报, 2009, 19(6): 1074–1079. LIU Wensheng, PENG Fen, MA Yunzhu, et al. Chin J Nonferrous Met(in Chinese), 2009, 19(6): 1074–1079.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com