首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
红外透明MgO–Y2O3纳米复相陶瓷研究进展
作者:李江1 姜楠1 2 徐圣泉1 刘强2 潘裕柏1 
单位:1.中国科学院上海硅酸盐研究所 透明光功能无机材料重点实验室 上海 200050  2. 江苏大学材料科学与工程学院 江苏 镇江 212013 
关键词:氧化镁–氧化钇纳米复相陶瓷 红外窗口材料 高马赫数导弹 研究进展 展望 
分类号:TQ174.75
出版年,卷(期):页码:2016,44(9):0-0
DOI:10.14062/j.issn.0454-5648.2016.09.09
摘要:
针对未来高马赫数导弹的发展趋势及红外窗口材料所面临的技术挑战,对比分析了当前几种常见的红外窗口材料。 MgO–Y2O3纳米复相陶瓷具有出色的中波红外透过性能、极低的高温辐射系数、优良的高温力学性能、适中的热学性能以及 仅次于蓝宝石的抗热震性,使其有望成为未来高马赫数导弹红外窗口/整流罩的最佳候选材料。同时着重对 MgO–Y2O3 纳米 复相陶瓷的研究进展,及其设计原理、制备方法和材料性能等做了综述和介绍,最后对其发展前景做了展望与分析。减小 MgO–Y2O3纳米复相陶瓷的晶粒尺寸有望实现该材料在可见光波段的应用,其力学性能也将进一步增强。真空烧结配合热等 静压烧结的工艺路线有望实现大尺寸、近净尺寸成型制备。
Some exsiting middle-wave infrared materials for the development of high-speed missile. MgO–Y2O3 nanocomposite ceramics are considered as one of the best candidates for infrared window material and radome of future hypersonic missile due to its superior mid-infrared transmission, low heat emissivity, superior high-temperature mechanical properties, moderate thermal properties and high thermal shock resistance comparable to the sapphire. The design principle, the preparation techniques as well as the all-sides properties of MgO–Y2O3 nanocomposite ceramics were also represented. The future work on MgO–Y2O3 nanocomposite ceramics was prospected. Decreasing the grain size of MgO–Y2O3 nanocomposite can have its application in the visible region and further enhance the mechanical properties. Large-size MgO–Y2O3 nanocomposite ceramics with near net-shape could be fabricated by vacuum sintering and subsequent hot isostatic pressing treatment.
基金项目:
国家自然科学基金(61575212)资助项目。
作者简介:
李 江(1977—),男,博士,研究院
参考文献:
[1] 范晋祥, 李亮, 李文军, 等. 定向红外对抗系统与技术的发展[J]. 红外与激光工程, 2015, 44(3): 789–794. FAN Jinxiang, LI Liang, LI Wenjun, et al. Infrared Laser Eng (in Chinese), 2015, 44(3): 789–794. [2] PATEL A, KJOS K, SASSO F, et al. Architecting a missile system for navy theater ballistic missile defense[J]. Nav Eng J, 1997, 109(3): 373–380. [3] 李丽娟, 白晓东, 刘珂. 空空导弹双色红外成像制导关键技术分析 [J]. 激光与红外, 2013, 43(9): 1036–1039. LI Lijuan, BAI Xiaodong, LIU Ke. Laser Infrared (in Chinese), 2013, 43(9): 1036–1039. [4] 张文攀, 吴军辉, 胡欣, 等.基于激光导引头对抗数据的光电对抗效 果实验方法[J]. 红外与激光工程, 2013, 03: 637–642. ZHANG Wenpan, WU Junhui, HU Xin, et al. Infrared Laser Eng (in Chinese), 2013, 03: 637–642. [5] ELKO E C, HOWARD J W, KOCHANSKI RC, et al. Rolling airframe missile: development, test, evaluation, and integration[J]. Johns Hopkins APL Tech Dig. 2001, 22(4): 573–582. [6] 付晓红. 飞机对抗红外成像导弹的方法[J]. 舰船电子工程, 2013(11): 127–130. FU Xiaohong. Ship Electron Eng (in Chinese), 2013(11):127–130. [7] BAE T W, KIM B I, KIM Y C, et al. Jamming effect analysis of infrared reticle seeker for directed infrared countermeasures[J]. Infrared Phys Technol, 2012, 55(5): 431–441. [8] 张元生. 机载定向红外对抗系统的最新进展[J]. 电光与控制, 2014(12): 53–56. Zhang yuansheng. Electron Opt Control (in Chinese), 2014(12): 53–56. [9] ???, LEE K–S, ???, ET AL. DIRCM jamming effect analysis of Spin–Scan reticle seeker [J]. J Korea Inst of Mil Sci Tech. 2009,12(6): 776–784. [10] 樊会涛. 第五代空空导弹的特点及关键技术[J]. 航空科学技术, 2011(3): 1–5. FAN Huitao. Aeronaut Sci Technol (in Chinese), 2011(3): 1–5. [11] LIU Xing, WANG Xizhi, ZHU Jiaqi, et al. Thermal–mechanical response of microscale funtional film for infrared window[J]. Trans Nonferrous Met Soc China, 2014(24): 1791–1799. [12] 潘枝峰, 毛小建, 张红刚, 等. 高超音速中波红外窗口材料思考[J]. 激光与光电子学进展, 2014(9): 153–159. PAN Zhifeng, MAO Xiaojian, ZHANG Honggang, et al. Laser Optoelectron Prog (in Chinese), 2014(9): 153–159. [13] 郭小青, 王衍行. 中波红外玻璃的研究[J]. 电光与控制. 2011(8): 56–59,83. GUO Xiaoqing, WANG Yanhang. Electron Opt Control (in Chinese), 2011(8): 56–59,83. [14] HARRIS D C. Durable 3–5 μm transmitting infrared window materials[J]. Infrared Phys Techn, 1998, 39(4): 185–201. [15] KOBAYASBHI K. Development of infrared transmitting glasses[J]. J Non–Cryst Solids, 2003, 316(2–3): 403–406. [16] GAN FX. Optical–Properties of fluoride glasses—a review[J]. J Non–Cryst Solids, 1995, 184: 9–20. [17] CORMIER L, NEUVILLE D R, CALAS G. Structure and properties of low–silica calcium aluminosilicate glasses[J]. J Non–Cryst Solids, 2000, 274(1–3): 110–114. [18] BORODIN A V. Advanced technologies of shaped sapphire fabrication[J]. J Cryst Growth, 2008, 310(7–9): 2141–2147. [19] DEMINA S E, BYSTROVA E N, LUKANINA M A, et al. Numerical analysis of sapphire crystal growth by the Kyropoulos technique[J]. Opt Mater, 2007, 30(1): 62–65. [20] ROTHMAN A, KALABUKHOV S, SVERDLOV N, et al. The effect of grain size on the mechanical and optical properties of spark plasma sintering–processed magnesium aluminate spinel MgAl2O4[J]. Int J Appl Ceram Tec, 2014, 11(1): 146–153. [21] GOLDMAN L M, BALASUBRAMANIAN S, SMITH M, et al. Conformal ALON (R) windows [C]//Conference on window and dome technologies and materials XIV, Baltimore, Md, 2015, 9453. [22] MOSS ROBERT H, SPICUZZA WILLIAM F, SWINEHART CARL F. Process for preparation of hot–pressable magnesium fluoride [P]. US Patent, 3920802, 1975–11–18. [23] The Harshaw Chemical Company. Hot–pressable magnesium fluoride powder [P]. US Patent, 4044112, 1975–11–14. [24] THOMAS M E, ANDERSSON S K, COTTER T M, et al. Infrared properties of polycrystalline magnesium fluoride[J]. Infrared Phys Techn. 1998,39(4): 213–222. [25] 王璐璐, 刘幽若, 纪烈孔, 等. 热压多晶氟化镁研究[J]. 无机盐工 业, 2004(01): 41–42. WANG Lulu, LIU Youruo, JI Liekong, et al. Inorg Chem Ind (in Chinese), 2004(01): 41–42. [26] CHANG C S, HON M H. Texture effect of hot–pressed magnesium fluoride on optical transmittance[J]. Mater Chem Phys, 2003,81(1): 27–32. [27] NOFAR M, HOSSEINI H R M, SHIVAEE H A. The dependency of optical properties on density for hot pressed MgF(2)[J]. Infrared Phys Technol, 2008, 51(6): 546–549. [28] 黄存新, 雷牧云, 彭载学, 等. 透明多晶尖晶石的光学和物理性[J]. 人工晶体学报, 2001(1): 67–71. HUANG Cunxin, LEI Muyun, PENG Zaixue, et al. J Synth Cryst (in Chinese), 2001(1): 67–71. [29] 雷牧云, 李祯, 洪冬梅, 等. 宽波段窗口材料透明尖晶石的透过性 能[J]. 红外与激光工程, 2012(3): 549–553. LEI Muyun, LI Zhen, HONG Dongmei, et al. Infrared Laser Eng (in Chinese), 2012(3): 549–553. [30] 雷牧云, 黄存新, 闻芳, 等. 透明尖晶石陶瓷的研究进展[J]. 人工 晶体学报, 2007(2): 319–322+333. LEI Muyun, HUANG Cunxin, WEN Fang, et al. J Synth Cryst (in Chinese), 2007(2): 319–322+333. [31] 聂辉, 陆炳哲. 蓝宝石及其在军用光电设备上的应用[J]. 舰船电子 工程, 2005, 252: 131–133. NIE Hui, LU Bingzhe. Ship Electron Eng (in Chinese), [32] 李玉民, 李瑾. 红外光学材料及整流罩技术的新发展[J]. 红外与激 光技术, 1995, 24(5): 1–6. LI Yumin, LI Jin. Infrared Laser Technol (in Chinese), 1995, 24(5): 1–6. [33] CHAIM R, SHLAYER A, ESTOURNES C. J Eur Ceram Soc, 2009, 29(1): 91–98. [34] REIS J, CHAIM R. Densification maps for spark plasma sintering of nanocrystalline MgO ceramics: Particle coarsening and grain growth effects[J]. Mater Sci Eng A–struct, 2008, 491(1–2): 356–363. [35] TRAN T B, HAYUN S, NAVROTSKY A, et al. Transparent nanocrystalline pure and Ca–doped MgO by spark plasma sintering of anhydrous nanoparticles[J]. J Am Ceram Soc, 2012, 95(4): 1185–1188. [36] THOMAS M E, JOSEPH R I, TROPF W J. Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency[J]. Appl Opt, 1988,27(2): 239–245. [37] IKEGAMI T, LI J G, MORI T, et al. Fabrication of transparent yttria ceramics by the low–temperature synthesis of yttrium hydroxide[J]. J Am Ceram Soc, 2002, 85(7): 1725–1729. [38] FURLONG L R, DOMINGUES L P. Sintering of yttrium oxide[J]. Am Ceram Soc Bull, 1966, 45: 1051–1054. [39] SORDELET D J, AKINC M. Sintering of monopsized, spherical yttria powers[J]. J Am Ceram Soc, 1988, 71(12): 1148–1153. [40] WILLINGHAM C B, WAHL J M, HOGAN P K, et al. Densification of nano–yttria powders for IR window applications[C]//8th annual international conference on electro–optic windows, domes, and materials, Orlando, 2003, 5078: 179–188. [41] BOCCACCINI A R, SILVA D D. Industrial developments in the field of optically transparent inorganic materials: A survey of recent patents[J]. Recent Pat Mater Sci, 2008, 1(1): 56–73. [42] STEFANIK T, GENTILMAN R, HOGAN P. Nanocomposite optical ceramics for infrared windows and domes[C]//Conference on window and dome technologies and materials X, Orlando, Fl, 2007, 6545: A5450–A5450. [43] LANGE F F, BALMER M L, LEVI C G. Diffusion limited crystallization and phase partitioning in ZrO2–metal oxide binary systems[J]. J Sol–Gel Sci Technol, 1994, 2(1–3): 317–321. [44] MUOTO C K, JORDAN E H, GELL M, et al. Phase homogeneity in Y2O3–MgO nanocomposites synthesized by thermal decomposition of nitrate precursors with ammonium acetate additions[J]. J Am Ceram Soc, 2011, 94(12): 4207–4217. [45] JIANG D, MUKHERJEE A K. Spark plasma sintering of an infrared–transparent Y2O3–MgO nanocomposite[J]. J Am Ceram Soc, 2010, 93(3): 769–773. [46] MUOTO C K, JORDAN E H, GELL M, et al. Effects of precursor chemistry on the structural characteristics of Y2O3–MgO nanocomposites synthesized by a combined sol–gel/thermal decomposition route[J]. J Am Ceram Soc, 2011, 94(2): 372–281. [47] HARRIS D C, CAMBREA L R, JOHNSON L F, et al. Properties of an infrared–transparent MgO:Y2O3 nanocomposite[J]. J Am Ceram Soc, 2013, 96(12): 3828–3835. [48] WISCOMBE W J. Improved Mie scattering algorithms. Appl Opt, 1980, 19(9): 1505–1059. [49] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles[M]. Wiley–VCH Verlag GmbH, 2007: 82–129. [50] SADANGI R, SHUKLA V, AL–SHARAB J F, et al. Transparent yttria–based nanocomposites[C]//17th international offshore and polar engineering conference (ISOPE 2007), Lisbon, Portugal, 2007: 2912–2915. [51] GLEITER H. Nanostructured materials: Basic concepts and microstructure[J]. Acta Mater, 2000, 48(1): 1–29. [52] KEAR B H, COLAIZZI J, MAYO W E, et al. On the processing of nanocrystalline and nanocomposite ceramics[J]. Scripta Mater, 2001, 44(8–9): 2065–2068. [53] WANG J W, ZHANG L C, CHEN D Y, et al. Y2O3–MgO–ZrO2 infrared transparent ceramic nanocomposites[J]. J Am Ceram Soc, 2012, 95(3): 1033–1037. [54] KEAR B H, SADANGI R, SHUKLA V, et al. Submicron–grained transparent yttria composites[C]//International conference on window and dome technologies and materials IX, Orlando, Fl, 2005, 5786: 227–233. [55] IYER A, GAROFANO J K M, REUTENAUR J, et al. A sucrose–mediated sol–gel technique for the synthesis of MgO–Y2O3 nanocomposites[J]. J Am Ceram Soc, 2013, 96(2): 346–350. [56] XU S Q, LI J, KOU H M, et al. Spark plasma sintering of Y2O3–MgO composite nanopowder synthesized by the esterification sol–gel route[J]. Ceram Int, 2015, 41(2): 3312–3317. [57] HUANG L, YAO W L, LIU J, et al. Spark plasma sintering and mechanical behavior of magnesia–yttria (50:50 vol.%) nanocomposites[J]. Scr Mater, 2014, 75: 18–21. [58] WANG J W, JORDAN E H, GELL M. Plasma sprayed dense MgO–Y2O3 nanocomposite coatings using sol–gel combustion synthesized powder[J]. J Therm Spray Technol, 2010, 19(5): 873–878. [59] SUN H B, ZHANG Y J, GONG H Y, et al. Microwave sintering and kinetic analysis of Y2O3–MgO composites[J]. Ceram Int, 2014, 40(7): 10211–10215. [60] LIU J, YAO W L, KEAR B, et al. Microstructure and IR transmittance of yttria–magnesia (50:50 vol.%) nano–composites consolidated from agglomerated and ultrasonic horn treated nano–powders[J]. Mater Sci Eng B–Adv Funct Solid–State Mater, 2010, 171(1–3): 149–154. [61] WANG J W, CHEN D Y, JORDAN E H, et al. Infrared–transparent Y2O3–MgO nanocomposites using sol–gel combustion synthesized powder [J]. J Am Ceram Soc, 2010, 93(11): 3535–3538. [62] XU S Q, LI J, LI C Y, et al. Hot pressing of infrared–transparent Y2O3–MgO nanocomposites using sol–gel combustion synthesized powders[J]. J Am Ceram Soc, 2015, 98(3): 1019–1026. [63] KAREIVA A, BRYNTSE I, KARPPINEN M, et al. Influence of complexing agents on properties of YBa2Cu4O8 superconductors prepared by the sol–gel method[J]. J Solid State Chem, 1996, 121(2): 356–361. [64] VEITH M, MATHUR S, KAREIVA A, et al. Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce–doped Y3Al5O12 via different sol–gel methods[J]. J Mater Chem, 1999, 9(12): 3069–3079. [65] CHEN C H, GAROFANO J K M, MUOTO C K, et al. A foaming esterification sol–gel route for the synthesis of magnesia–yttria nanocomposites[J]. J Am Ceram Soc, 2011, 94(2): 367–371. [66] 徐圣泉. 红外透明 Y2O3–MgO 纳米复相陶瓷的制备及性能研[D]. 北京: 中国科学院大学, 2015. XU Shengquan. Fabrication and properties of infrared–transparent Y2O3–MgO nanocomposite ceramics (in Chinese, dissertation). Beijing: University of Chinese Academy of Science, 2015. [67] XU S Q, LI J, LI C Y, et al. Infrared–transparent Y2O3–MgO nanocomposites fabricated by the glucose sol–gel combustion and hot–pressing technique[J]. J Am Ceram Soc, 2015, 98(9): 2796–2802 [68] JIANG D T, MUKHERJEE A K. The influence of oxygen vacancy on the optical transmission of an yttria–magnesia nanocomposite[J]. Scr Mater, 2011, 64(12): 1095–1097. [69] HAZEN R M. Effects of temperature and pressure on the cell dimension and X–ray temperature factors of periclase[J]. Am Miner. 1976, 61: 266–271. [70] RHODES W H. Controlled transient solid second–phase sintering of yttria[J]. J Am Ceram Soc, 1981, 64(1): 13–19. [71] HARRIS D C, JOHNSON L F, SEAVER R, et al. Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 μm wavelengths and comparison with sapphire[J]. OPTICE, 2013, 52(8): 087113. [72] 王亚辉, 王强, 高磊, 等. 高超声速飞行器气动热辐射特性[J]. 红 外与激光工程, 2013(6): 1399–1403. WANG Yahui, WANG Qiang, GAO Lei, et al. Infrared Laser Eng (in Chinese), 2013(6): 1399–1403. [73] VICTOR A C, DOUGLAS T B. Thermodynamic properties of magnesium oxide and beryllium oxide from 298 to 1200 K[J]. J Res Nat Bur Stand, 1963, 67A: 325–329. [74] BARRON T H K, BERG W T, MORRISON J A. On the heat capacity of crystalline magnesium oxide[J]. Proc Roy Soc Lon, 1959, 250: 70–83. [75] HARRIS. D C, COMPTON. W R. Optical, thermal, and mechanical properties of yttria and lanthana–doped yttria[J]. Naval Weapons Center TP 1989, 7002. [76] CAHILL D G, LEE S M, SELINDER T I. Thermal conductivity of κ–Al2O3 and α–Al2O3 wear–resistant coatings[J]. J Appl Phys, 1998, 83(11): 5783–5786. [77] CHARVAT F R, KINGERY W D. Thermal conductivity: XIII, effect of microstructure on conductivity of single–phase ceramics[J]. J Am Ceram Soc, 1957, 40(9): 306–315. [78] HASSELMAN D P H. Thermal stress resistance of engineering ceramics[J]. Mater Sci Eng, 1985, 71: 251–264. [79] KLEIN C A. Thermal shock resistance of infrared transmitting windows and domes[J]. Opt Eng, 1998, 37(10): 2826–2836.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com