首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
BaAl2O4:Eu 直接白色荧光粉的制备及其发光性能
作者:王梓垚 陈健 刘艳改 夏宇飞 米瑞宇 黄朝晖 房明浩 
单位:中国地质大学北京材料科学与工程学院 非金属材料和固废资源材料利用北京市重点实验室  矿物材料国家专业实验室 北京 100083 
关键词:铝酸钡 荧光粉 自还原 发光性能 白光发光二极管 
分类号:O482.31
出版年,卷(期):页码:2016,44(9):0-0
DOI:10.14062/j.issn.0454-5648.2016.09.11
摘要:
采用高温固相法,通过控制反应温度和 Eu3+掺杂量,制备 BaAl2O4: Eu 直接白色荧光粉。以电荷补偿模型为基础讨 论了自还原机理。当合成温度为 1 200 ℃、Eu3+掺杂量为 12%(摩尔分数)时,荧光粉颜色趋近于白光,色坐标位于(0.36,0.38)。 通过 X 射线光电子能谱、发射和激发光谱以及漫反射光谱,研究了 BaAl2O4: Eu 荧光粉的发光性能。结果表明:荧光粉中存 在 2 个发光中心,分别与 Ba 的 2 种格位相对应。Eu2+和 Eu3+共存于基质中,说明 Eu3+在空气中发生自还原反应。主峰位于 500 nm 处的发射宽谱符合 Eu2+的 4f 65d–4f 7跃迁,596、619、655 以及 709 nm 处的发射峰分别对应 Eu3+的 4f–4f 中 5d0–7fJ (J = 1,2,3,4)特征发射跃迁,发射峰以 619 nm 处的 5d0–7f2电偶极跃迁为主。
BaAl2O4:Eu direct white light phosphors were synthesized with BaAl2O4, by a high-temperature solid state method. The mechanism of self-reduction was analyzed based on the charge compensation model. The luminescence properties of BaAl2O4: Eu phosphors were investigated. The results show that when the synthesis temperature is 1 200 ℃ and the doping concentration of Eu3+ is 12% (in mole fraction), the color of prepared phosphor becomes white with the International Commission on Illumination(CIE) coordinates (0.36, 0.38). There are two luminescence centers in the host, which corresponds to the two types of barium sites. The self-reduction occurs in air in BaAl2O4, leading to the coexistance of Eu2+ and Eu3+. The band emission peak at 500 nm is assigned to 4f65d–4f7 transition of Eu2+, and another four emissions peaks at 596, 619, 655 and 704 nm are attributed to 4f–4f transitions of 5d0–7fJ (J = 1, 2, 3 and 4) of Eu3+. The main emission of BaAl2O4:Eu is located at 619 nm due to the electric dipole transition of 5d0–7f2 of Eu3+. The prepared BaAl2O4:Eu phosphors can be regarded as an alternative approach to obtain direct white emission with the proper wavelengths of UV irradiation.
基金项目:
国家自然科学基金(51472223),新世纪优秀人才计划 (NCET-12-0951)资助。
作者简介:
王梓垚(1993—),男,硕士研究生。
参考文献:
[1] WANG M, GUO S, LI Y, et al. A direct white-light-emitting metal–organic framework with tunable yellow-to-white photoluminescence by variation of excitation light[J]. J Am Chem Soc, 2009, 131(38): 13572(1–3). [2] CAO R, XIONG Q, LUO W, et al. Synthesis and luminescence properties of efficient red phosphors SrAl4O7:Mn4+,R+ (R+ = Li+, Na+, and K+) for white LEDs[J]. Ceram Int, 2015, 41(5): 7191–7196. [3] XIA Y, CHEN J, LIU Y G, et al. Luminescence properties and energy transfer in K2MgSiO4: Ce3+, Tb3+ as a green phosphor[J]. Mater Expr, 2016, 6(1): 37–44. [4] CHEN J, LIU Y G, MEI L, et al. Emission red shift and energy transfer behavior of color-tunable KMg4(PO4)3:Eu2+,Mn2+ phosphors[J]. J Mater Chem. C, 2015, 3(21): 3451–3455. [5] KIM J S, JEON P E, CHOI J C, et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ Phosphor[J]. Appl Phys Lett, 2004, 84(15): 2931–2933. [6] GUO N, JIA Y, LV W, et al. A direct warm-white-emitting Sr3Sc(PO4)3:Eu2+, Mn2+phosphor with tunable photoluminescence via efficient energy transfer[J]. Dalton Trans, 2013, 42(16): 5649–5654. [7] CHEN J, LIU Y, LIU H, et al. The luminescence properties of novel α-Mg2Al4Si5O18:Eu2+ phosphor prepared in air[J]. Rsc Adv, 2014, 4(40): 18234–18239. [8] LIN J, QIANG S, WANG S, et al. Influence of crystal structure on the luminescence properties of bismuth(III), europium(III) and dysprosium(III) in Y2SiO5[J]. J Mater Chem, 1996, 6(2): 265–269. [9] PEI Z, QIANG S, ZHANG J. The valence change from RE3+ to RE2+ (RE = Eu, Sm, Yb) in SrB4O7:RE prepared in air and the spectral properties of RE2+[J]. J Alloy Compd, 1993, 198(s1–2): 51–53. [10] MADHUSOODANAN U, JOSE M T, LAKSHMANAN A R. Development of BaSO4:Eu thermoluminescence phosphor[J]. Radiat Meas, 1999, 30(1): 65–72. [11] PENG M, PEI Z, HONG G, et al. The reduction of Eu3+ to Eu2+ in BaMgSiO4: Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor[J]. J Mater Chem, 2003, 13(5): 1202–1205. [12] LIAN Z, WANG J, LV Y, et al. The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses[J]. J Alloy Compd, 2007, 430(s1–2): 257–261. [13] QIANG S, ZENG Q, PEI Z. Preparation of borates doped with divalent rare earth Ions(RE2+) in air and spectroscopy of divalent rare earth ions(RE2+ = Sm, Eu, Tm, Yb)[J]. Chin J Inorg Chem, 2000, 16(2): 293–298. [14] QIANG S, LIANG H, HU T, et al. Preparation of divalent rare earth ions in air by aliovalent substitution and spectroscopic properties of Ln2+[J]. J Alloy Compd, 2002, 344(s1–2): 132–136. [15] CHEN J, LIU Y, LIU H, et al. Tunable SrAl2Si2O8:Eu phosphor prepared in air via valence state-controlled means[J]. Opt Mater, 2015, 42: 80–86. [16] HU Y, ZHUANG W, YE H, et al. A novel red phosphor for white light emitting diodes[J]. Cheminform, 2005, 390(s1–2): 226–229. [17] DHOBLE S J, RAUT S K, DHOBLE N S. Synthesis and photoluminescence characteristics of rare earth activated some silicate phosphors for LED and display devices[J]. Int J Lumin Appl, 2015, 5(2): 178–182. [18] PENG M, HONG G. Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu[J]. J Lumin, 2007, 127(127): 735–740. [19] PARCHUR A K, NINGHOUJAM R S. Behaviour of electric and magnetic dipole transitions of Eu3+, 5D0–7F0 and Eu–O charge transfer band in Li+ co-doped YPO4:Eu3+[J]. Rsc Adv, 2012, 2(29): 10859–10868. [20] RODRIGUES L C V, BRITO H F, HOLSA J, et al. Persistent luminescence behavior of materials doped with Eu2+ and Tb3+[J]. Opt Mater Expr, 2012, 2(4): 382–390. [21] HANG C, CHEN T. Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+(Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index[J]. Inorg Chem, 2011, 50(12): 5725–5730. [22] WANG D, YIN Q, LI Y, et al. Concentration quenching of Eu2+ in SrO·6Al2O3: Eu2+ phosphor[J]. J Mater Sci, 2002, 37(2): 381–383. [23] PENG M, PEI Z, HONG G, et al. Study on the reduction of Eu3+–Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere[J]. Chem Phys Lett, 2003, 371(1): 1–6. [24] ZENG Q, PEI Z, WANG S, et al. The reduction of Eu3+ in SrB6O10 prepared in air and the luminescence of SrB6O10:Eu[J]. J Alloy Compd, 1998, 275(77): 238–241. [25] PENG M, QIU J, YANG L, et al. Observation of Eu3+–Eu2+ in barium hexa–aluminates with β’ or β-alumina structures prepared in air[J]. Opt Mater, 2004, 27(3): 591–595. [26] BRITO H F, FELINTO M C F C, HOLSA J, et al. DFT and synchrotron radiation study of Eu2+ doped BaAl2O4[J]. Opt Mater Expr, 2012, 2(4): 420–431. [27] HORKNER W, MULLER BH. Zur Kristallstruktur von BaAl2O4[J]. J Inorg Nucl Chem, 1979, 451(5): 40–44. [28] BRITO H F, FELINTO M C F C, HOLSA J, et al. DFT and synchrotron radiation study of Eu2+ doped BaAl2O4[J]. Opt Mater Expr, 2012, 2(4): 420–431. [29] WAKO A H, DEJENE F B, SWART H C. Combustion synthesis, characterization and luminescence properties of barium aluminate phosphor[J]. J Rare Earths, 2014, 32(9): 806–811.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com