首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Y2O3掺杂对La2Zr2O7陶瓷材料结构与热物理性能的影响
作者:谢敏1 2 张永和2 周芬2 宋希文2 安胜利1 2 
单位:1.北京科技大学冶金与生态学院 北京 100083 2.内蒙古科技大学材料与冶金学院 内蒙古 包头 014010 
关键词:掺杂锆酸镧 烧绿石结构 热物理性能 热障涂层材料 
分类号:TG174.45;TQ174
出版年,卷(期):页码:2016,44(9):0-0
DOI:10.14062/j.issn.0454-5648.2016.09.15
摘要:
Y2O3掺杂 La2Zr2O7得到(La1–xYx)2Zr2O7(x=0,0.1,0.2,x 为摩尔分数)陶瓷材料,利用 X 射线衍射仪、扫描电子显 微镜、激光导热仪以及热膨胀仪分别对其物相结构、显微形貌、热导率及热膨胀性能进行表征。结果表明,(La1–xYx)2Zr2O7为立方烧绿石结构,显微结构致密,在室温至 1 450 ℃范围内具有良好的高温相稳定性。La2Zr2O7掺杂小离子半径 Y3+可提高 其热膨胀系数(x=0.2)、降低热扩散系数,并在高温下表现出类似于玻璃的超低热导率。1 000 ℃时,La1.6Y0.4Zr2O7的热导率为 1.28 W·m–1·K–1,平均热膨胀系数达到 9.7×10–6 K–1。
(La1–xYx)2Zr2O7 (x=0, 0.1, 0.2) ceramics were synthesized by Y2O3 doping in La2Zr2O7. The phase structure was analysed by X-ray diffractometer. The feature surface was determined by scanning electron microscope. The thermal diffusivities and thermal expansion coefficient (TEC) of the ceramic materials were examined by a laser-flash method and thermal dilatometer, respectively. The results show that (La1–xYx)2Zr2O7 exhibits a pyrochlore crystal structure, a dense microstucture and a superior structural stability at a high temperature. The ceramic doped with smaller Y3+ shows a higher thermal expansion coefficent(TEC) (x=0.2), lower thermal diffusivities and a nearly temperature-independent behavior reported as glass-like extraordinarily low thermal conductivities. The thermal conductivity of La1.6Y0.4Zr2O7 is 1.28 W·m–1·K–1 at 1 000 ℃, and the average TEC is 9.7×10–6 K–1.
基金项目:
谢 敏(1981—),女,博士研究生。
作者简介:
国家高技术研究发展计划(2015AA034403);内蒙古自治区科 技项目(20140508-2);内蒙古科技大学材料与冶金学院青年 人才孵化器平台(2014CY012)资助。
参考文献:
[1] CAO X Q, VASSEN R, ST?VER D. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 2004, 24(1): 1–10. [2] VASSEN R., CAO X Q, TIETZ F, et al. Zirconates as new materials for thermal barrier coatings[J]. J Am Ceram Soc, 2000, 83(8): 2023–2028. [3] WANG J, BAI S X, ZHANG H, et al. The structure, thermal expansion coef?cient and sintering behavior of Nd3+ doped La2Zr2O7 for thermal barrier coatings[J]. J Alloys Compd, 2009, 476(1–2): 89–91. [4] YAMAZAKI S, YAMASHITA T, MATSUI T, et al. Thermal expansion and solubility limits of plutonium-doped lanthanum zirconates[J]. J Nucl Mater, 2001, 294(1–2): 183–187. [5] LEHMANN H, PITZER D, PRACHT G, et al. Thermal conductivity and thermal expansion coef?cients of lanthanum rare-earth-element zirconate system[J]. J Am Ceram Soc, 2003, 86(8): 1338–1344. [6] NAROTTAM P B, ZHU D M. Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings[J]. Mater Sci Eng A, 2007, 459(1–2): 192–195. [7] WAN C L, ZHANG W, WANG Y F, et al. Glass–like thermal conductivity in ytterbium–doped lanthanum zirconate pyrochlore[J]. Acta Mater, 2010, 58(18): 6166–6172. [8] WANG Y F, YANG F, XIAO P. Glass-like thermal conductivities in (La1–x1Yx1)2 (Zr1–x2Yx2)2O7–x2 (x=x1+x2, 0≤x≤1.0) solid solutions[J].Acta Mater, 2012, 60(20): 7024–7033. [9] WANG Y F. The improvement of thermal and mechanical properties of La2Zr2O7-based pyrochlores as high temperature thermal barrier coatings[D]. Manchester: The University of Manchester, 2013. [10] ZHANG Y H, XIE M, ZHOU F, et al. Low thermal conductivity in La2Zr2O7 pyrochlore with A-site partially substituted with equimolar Yb2O3 and Er2O3[J]. Ceram Int, 2014, 40: 9151–9157. [11] ZHANG Y H, XIE M, ZHOU F, et al. Influence of Er substitution for La on the thermal conductivity of (La1–xErx)2Zr2O7 pyrochlores[J]. Mater Res Bull, 2015, 64: 175–181. [12] SARUHAN B, FRANCOIS P, FRISTSCHER K, et al. EB–PVD processing of pyrochlore- structured La2Zr2O7-based TBCs[J]. Surf Coatings Technol, 2004, 182: 175–183. [13] PADTURE N P, GELL M, JORDAN E H. Materials science thermal barrier coatings for gas turbine engine apptications[J]. Science, 2002, 296(5566): 280–284. [14] SUBRAMANIAN M A, ARAVAMUDAN G, SUBBA RAO G V. Oxide pyrochlores-A review[J]. Progr in Solid State Chem, 1983, 15(2): 55–143. [15] HANAKO N, YAMAMURA H, AARAI T, et al. Effect of cation radius ratio and unit cell free volume on oxide-ion conductivity in oxide systerms with pyrochore-type composition[J]. J Ceram Soc Japan, 2004, 112(10): 541–546. [16] YAMAMURA H, NISHINO H, KAKINUMA K, NOMURA K. Electrical conductivity anomaly around fluorite–pyrochlore phase boundry[J]. Solid State Ion, 2003, 158(3–4): 359–365. [17] KINGERY W D, BOWEN H K, UHLMANN D R. Introduction to ceramics[M]. New York: John Wiley & Sons, 1976: 589–594. [18] QU Z X, WAN C L, PAN W. Thermal expansion and defect chemistry of MgO–doped Sm2Zr2O7[J]. Chem Mater, 2007, 19(20): 4913–4918. [19] MCCAULEY R A. Structural characteristics of pyrochlore formation[J]. J Appl Phys, 1980, 51(1): 290–294. [20] CHAKOUMAKOS B C. Systematics of the pyrochlore structure type, ideal A2B2X6Y[J]. J Solid State Chem, 1984, 53(1): 120–129. [21] QU Z X, WAN C L, PAN W. Thermophysical properities of rare–earth stannates: Effect of pyrochlore structure[J]. Acta Mater, 2012, 60(6–7): 2939–2949. [22] ZHOU H M, YI D Q, YU Z M, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings[J]. J Alloys Compd, 2007, 438(1–2): 217–221. [23] KLEMENS P G, GELL M. Thermal conductivity of thermal barrier coatings[J]. Mater Sci Eng A, 1998, 245(2): 143–149. [24] CLARKE D R, LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annu Rev Mater Res, 2003, 33(1): 383–417.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com