首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
三乙醇胺浓度对 HA/TiO2梯度复合涂层性能的影响
作者:赵磊 黄哲 邵慧萍 崔倩月 张乐 任向远 
单位:北京科技大学新材料技术研究院 北京 100083 
关键词:电泳沉积 三乙醇胺 双电层 羟基磷灰石 
分类号:O482
出版年,卷(期):页码:2016,44(9):0-0
DOI:10.14062/j.issn.0454-5648.2016.09.17
摘要:
研究了不同三乙醇胺浓度悬浮液对电泳沉积法制备的 HA/TiO2梯度复合涂层性能的影响,并分析了悬浮液中三乙醇 胺的分散机理。研究表明:当悬浮液中三乙醇胺(简称TEA)的浓度为30 mL/L时,悬浮液中HA/TiO2的平均粒径最小(24.47 nm), Zeta 电位最高(67.7 mV),说明此时悬浮液的稳定性最高,此时 HA/TiO2梯度复合涂层表面形貌均匀,而且没有团聚和裂纹出 现,其厚度均匀,大约在 25 μm 左右;涂层 Ca 与 P 的元素原子比为 1.76,与人体骨中的钙磷比十分接近;涂层在模拟体液 中浸泡 1 h 后,腐蚀电位最高(37.88 mV),腐蚀电流密度最小(0.21 mA/cm2),说明此时涂层的耐腐蚀性最好;当悬浮液中三乙 醇胺浓度为 30 mL/L 时,涂层结合强度最高,拉伸法测得此时 HA/TiO2梯度复合涂层的结合力达到 8.85 MPa。
The effect of concentration of triethanolamine (TEA) on the HA/TiO2 composite coating was investigated via the electrophoretic deposition. The dispersive mechanism of TEA in the suspension was also analyzed. The results show that the average particle size of HA/TiO2 nanoparticles is 24.5 nm and the Zeta potential on the particle surface is 67.7 mV at the concentration of TEA of 30 mL/L in the suspension, illustrating the optimum stability of suspension. The microtopography of the HA/TiO2 composite coating is uniform without agglomeration and cracks, the atomic ratio of Ca and P is 1.76, which is similar to that in the human bone. The thinkness of the HA/TiO2 composite coating is approximately 25 μm. The corrosion potential of the HA/TiO2 composite coating immersed in simulated body fluids (SBF) for 1 h is 37.88 mV, and the corrosion current density is 0.21 mA/cm2, showing the optimum corrosion resistance of the HA/TiO2 composite coating. Also, the maximum adhesion strength is 8.85 MPa at the concentration of TEA of 30 mL/L.
基金项目:
作者简介:
参考文献:
[1] CAPARRO C, GUILLEM-MARTI J, MOLMENEU M, et al. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants [J]. J Mech Biomed Mater, 2014, 39:79–86. [2] 李爱昌, 卢艳红, 陈荣英, 等. 电泳法制备二氧化钛/多壁碳纳米管 薄膜及其光催化降解罗丹明 B 的性能[J]. 硅酸盐学报, 2014, 42(6): 808–815. LI Aichang, LU Yanhong, CHEN Rongying, et al. J Chin Ceram Soc, 2014, 42(6): 808-815. [3] 曹鑫, 党新安, 杨立军. 多孔钛支架表面羟基磷灰石的仿生生长[J]. 硅酸盐学报, 2015, 43(6): 823–828. Cao Xin, DANG Xinan, YANG Lijun. J Chin Ceram Soc, 2015, 43(6): 823–828. [4] OZHUKIL K V, CHEN Q, CLSSET R, et al. AC vs. DC electrophoretic deposition of hydroxyapatite on titanium [J]. J Eur Ceram Soc, 2013, 33: 2715–2721. [5] KAZEK-KESIK A, KROK-BORKOWICZ M, PAMULA E, et al. Electrochemical and biological characterization of coatings formed on Ti–15Mo alloy by plasma electrolytic oxidation [J]. Mater Sci Eng C: Biomimetic Mater, Sens Syst, 2014, C43: 172–181. [6] BHAWANJALI S, REVATHI A, POPAT K.C, et al. Surface modification of Ti–13Nb–13Zr and Ti–6Al–4V using electrophoretic deposition (EPD) for enhanced cellular interaction [J].Mater Technol, 2014, 29: B54–B58. [7] LEE K, CHOE H C, KIM B H, et al. The biocompatibility of HA thin films deposition on anodized titanium alloys [J]. Surf Coat Technol, 2010, 205: S267–S270. [8] VAMSI K B, XUE W, BOSE S, et al. Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures [J]. Acta Biomater, 2008, 4: 697–706. [9] ARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials, 2005, 26(27): 5474–5491. [10] YUGESWARANA S, KOBAYASHI A, HIKMET U A, et al. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure TiO2 composite coatings[J]. Appl Surf Sci, 2015, 347: 48–56. [11] 魏然. 多孔钛合金表面生物涂层的制备及研究 [M]. 北京: 北京科 技大学, 2012: 6–7. [12] MIURA K, YAMADA N, HANADA S, et al. The bone tissue compatibility of anew Ti–Nb–Sn alloy with a low Young's modulus, Acta Biomater, 2011, 7: 2320–2326. [13] ZHOU H, LEE J. Nanoscale hydroxyapatite particles for bone tissue engineering [J]. Acta Biomater, 2011, 7: 2769–2781. [14] FARROKHI-RAD M, SHAHRABI T. Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nano particles and properties of obtained coatings [J]. Ceram Int, 2014, 40: 3031–3039. [15] 王周成, 倪永金, 黄金聪. 悬浮液粉体含量对电泳沉积羟基磷灰石 涂层的影响[J]. 硅酸盐学报, 2008, 36(5): 626–630. WANG Zhoucheng, NI Yongjin, HUANG Jincong. J Chin Ceram Soc, 2008, 36(5): 626–630. [16] BESRA L, LIU M. A review on fundamentals and applications of elec-trophoretic deposition (EPD) [J]. Prog Mater Sci, 2007, 52 :1–61. [17] 高濂, 孙静, 刘阳桥. 纳米粉体的分散及表面改性[M]. 北京: 化学 工业出版社, 2003: 11–19. [18] FARROKHI-RAD M, SHAHRABI T. Effect of triethanolamine on the electrophoretic deposition of hydroxyapatite nano particles in isopropanol [J]. Ceram Int, 2013, 39: 7007–7013. [19] GEMELLI E, RESENDE C, DE ALMEIDA SOARES G. Nucleation and growth of octacalcium phosphate on treated titanium by immersion in a simplified simulated body fluid [J]. J Mater Sci.: Mater. Med, 2010, 21: 2035–2047. [20] KRUEGER H G, KNOTE A, SCHINDLER U, et al. Composite ceramic metal coatings by means of combined electrophoretic deposition [J]. J Mater Sci, 2004, 39(8): 39–44. [21] JANKOVIC A, ERAKOVIC S, MITRIC M, et al. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid [J]. J Alloy Compd, 2015, 624: 148–157. [22] HAMIDREZA F, JAMSHID A M, DAVOUD H F, et al. A kinetic study on the electrophoretic deposition of hydroxyapatite-titania nanocomposite based on a statistical approach [J]. Ceram Int, 2012, 38: 6753–6767. [23] MOHANA L, DURGALAKSHMI D, GEETHA M, et al. Electrophoretic deposition of nanocomposite (HAp+TiO2) on titanium alloy for biomedical applications [J]. Ceram Int, 2012, 38: 3435–3443.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com